
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Tuning RNN-based musical
composers for specific compositional

styles using Deep Q-Learning

Author:
Rodrigo Schönburg Carrillo
de Mira

Supervisor:
Björn Schuller,

Eduardo Coutinho

Submitted in partial fulfillment of the requirements for the MSc degree in
Advanced Computing of Imperial College London

September 2018

Abstract

Music composition is a complex field which is difficult to automate because the com-
putational definition of what is good or aesthetically pleasing is vague and subjective.
Many neural network based methods have been applied in the past, but they lack
consistency and in most cases their outputs fail to impress.The most common issues
include excessive repetition and a lack of style and structure, which immediately la-
bel the compositions as artificial. In this project, we build on two successful models
created by Magenta - the Melody RNN and the RL Tuner - combining them and ex-
tending them to emulate a specific musical genre - the Galician Xota. To do this, we
design a new rule-set containing rules that the composition should follow in order
to adhere to this style. We then implement them using reward functions, which are
used to train the Deep Q Network that will be used to generate the pieces. After ex-
tensive experimentation, we achieve a successful implementation of our rule-set and
outline a solid research methodology for future researchers looking to use this archi-
tecture. Finally, we propose some promising future work motivated by two proofs of
concept.

ii

Acknowledgments

I would like to thank Eduardo Coutinho and Björn Schuller for their supervision as
well as Georgios Rizos for his help with technical and conceptual issues during my
research. I would also like to thank Emilia Parada-Cabaleiro for her help in choosing
and gathering an adequate dataset for the development of the project. Additionally, I
would like to thank my friends and family for their continued support without which
this work would not have been possible. As a final note, I would like to show my
appreciation for David Tuckey’s help and encouragement during the past 12 months.

iii

Contents

1 Introduction 1

2 Background 4
2.1 Deep Learning/RL . 4

2.1.1 Recurrent Neural Networks 4
2.1.2 Generative Adversarial Networks 11
2.1.3 Other methods applied to music composition 16
2.1.4 Deep Q Learning in the context of music generation 18

2.2 Overview of key music theory concepts 21
2.2.1 Fundamentals of music theory 21
2.2.2 Fundamentals of melodies . 22

3 Dataset 25
3.1 General description . 25
3.2 Musical formats . 26
3.3 Collection process and preprocessing 26

4 Melody RNN 28
4.1 Brief description of the model . 28
4.2 Overview of the basic training procedure 29
4.3 Attention Mechanisms . 30
4.4 Overfitting . 31
4.5 Final configurations . 35

5 RL Tuner 36
5.1 Description . 36
5.2 Description of rule-sets . 37

5.2.1 The original rule-set . 38
5.2.2 The Galician rule-set . 41
5.2.3 Combining the two rule-sets 46

5.3 Training procedure . 46
5.4 Preparing the RL Tuner . 49

6 Experiments and analysis of results 51
6.1 Outline of the experimental procedure 51
6.2 Melody RNN, No RL . 52

v

CONTENTS Table of Contents

6.2.1 Pre-trained Basic RNN (1.1) 52
6.2.2 Galician Basic RNN (2.1) . 52
6.2.3 Pre-trained+Galician Basic RNN (3.1) 53
6.2.4 Galician Attention RNN (4.1) 54

6.3 Pre-trained/Both sets . 54
6.3.1 Section A . 55
6.3.2 Section B . 59

6.4 Other RL configurations . 63
6.4.1 Other RNNs with both rule-sets 63
6.4.2 Other rule-sets . 64

6.5 Summary of the results . 66

7 Conclusions and future work 73
7.1 Overview of the project . 73
7.2 Summary of novel findings . 74
7.3 Future work . 76

7.3.1 Inverse Reinforcement Learning 76
7.3.2 Emotional rule-set . 77

Appendices 78

A Relevant code from Magenta 79

B RNN Training Charts 81

C Ethics checklist 85

D Ethical and professional considerations 87

vi

Chapter 1

Introduction

Since the birth of Artificial Intelligence (AI), there have been many attempts to au-
tomate creativity in various areas. However, the most elusive field has always been
music, due to its deep connection with human emotions and our limited under-
standing of how it can affect us so profoundly with a simple sequence of notes. Al-
gorithmic approaches for this problem have been proposed for various decades, but
they cannot truly be considered intelligent since they operate on a list of commands
made by human beings, instead of learning on their own. With the advent of Deep
Learning and its exponential increase in popularity during the twenty-first century, a
promising method has been found for composing music: recurrent neural networks.
Specifically, Long Short-Term Memory (LSTM) networks [1] have been widely used
due to their superior ability to model long term dependencies accurately. Recently,
research laboratories such as Google Magenta have managed to build around this
type of network to create more complex architectures. These attempt to perfect
the usage of RNNs while pairing them with other techniques such as Reinforcement
Learning (RL) [2]. On the other hand, some research groups have focused on using
Generative Adversarial Networks (GANs) to exploit LSTMs [3], while others have
even attempted to compose music without using any type of RNN [4].

In any case, the task of generating music with no human interaction is inherently
difficult. Generating images using neural networks, for instance, is generally not an
easy task, but when the results are not ideal it is easy to describe why: the image
is too blurry, this object should not be in the picture, among others. This is due to
the transparent nature of images as something that we can grasp and describe easily.
Music, on the other hand, is a much more cryptic medium. While we find it very
easy to know whether or not we like a certain song, it is very difficult to describe
why and even more challenging to actually theorize a song that would match our
taste (which is typically a very narrow slice from the set of possible compositions).
This makes it very difficult for the neural network to create pleasing results, given
that its margin for error is so minute, and leads to an arduous tuning procedure,
since it is hard to know how to steer the artificial composer in the correct direction.

Previous works in artificial music composition have struggled due to multiple spe-
cific issues. The first of these is overfitting. RNNs tend to overfit if not monitored

1

Chapter 1. Introduction

correctly and trained with preventive measures such as a high dropout rate. This
is especially problematic in music composition due to the limited datasets available.
The main issue with RNNs, however, is the inability to live up to the promise of tak-
ing into account all previous inputs. Even with the introduction of the LSTM cell and
attention mechanisms, there are still issues with numerical instability which prevent
it from being able to model all of the previous composition (in the case of music
generation) with the current state of the network. In addition, more recent methods
such as GANs (Generative Adversarial Networks) and VAEs (Variational Auto En-
coders), which have attained massive success in other generative tasks, have failed
to impress with regards to composing pleasing music, remaining a step behind RNNs.

This project 1 focuses on emulating a very specific compositional style (the Gali-
cian Xota) by applying a new dataset and rule-set (set of music theory rewards) to
an existing project: the RL Tuner [2]. This model focuses on Reinforcement Learn-
ing, attempting to use a trained RNN and a set of music theory rules to provide
rewards in a Q Learning architecture, with the intent of tuning the compositions
of traditional LSTMs. We also attempt to combine combine the RL Tuner with the
Attention RNN [6], another promising project that instead focuses on imbuing tradi-
tional LSTM’s with attention mechanisms, which have gained tremendous popularity
in other areas regarding machine learning. These projects both include experiments
which boast very impressive outputs. In the end, the research procedure leads to
experimentation with the new rule-set in order to transfer the style of this genre to
RNNs which were trained with a general dataset, so as to show the power of the RL
Tuner. Our contributions are as follows:

Major contributions:

• Developing a new rule-set (set of rewards) for the Galician Xota genre and
integrating it in the RL Tuner code.

• Developing a new version of the Basic RNN which adds attention mechanisms
while keeping the same encoding and modifying the RL Tuner in order to ac-
cept the checkpoints trained with this new model.

• Experimenting with a broad set of RNN configurations and reward modes in
order to provide a more complete set of detailed experimental training proce-
dures which can aid further research with the RL Tuner.

• Describing a set of empirically justified findings which dictate how The RL
Tuner can be used and extended while explaining its limitations and how they
can be compensated.

• Implementing simplified demonstrations of two extensions that can be made
to this project - Inverse Reinforcement Learning and emotional rule-sets - in
order to motivate future research with this model.

1The code and results for all of the experiments in this project, as well as the full dataset are avail-
able on https://github.com/miraodasilva/RL RNN MusicComposer and will be referenced through-
out this report as [5]. The generated samples can also be found in the repository [5]

2

https://github.com/miraodasilva/RL_RNN_MusicComposer

Chapter 1. Introduction

Minor contributions:

• Repairing and extending the original RL Tuner architecture in order to enable
a more complete research process.

• Creating an open-source Guitar Pro 5 to MIDI converter which can be used in
other projects with MIDI based datasets.

• Implementing an open-source data augmenter for MIDI datasets based on pre-
vious research [7].

This report will feature six remaining chapters (excluding the introduction). Chap-
ter 2 will be dedicated to background knowledge, explaining the relevant previous
work in artificial music composition with Deep Learning, while also exploring Deep
Q Learning and basic music theory. Chapter 3 will focus on the Melody RNN (An
RNN Model published by Magenta) and its three variants: the Basic RNN, the Look-
back RNN and the Attention RNN. We will then explain how we used attention
mechanisms and dealt with overfitting during the training procedure, as well as
some further details regarding specific parameters. Chapter 4 will focus on the main
object of our research, the RL Tuner, and how it was configured. Specifically, we
mention the original as well as the new rule-sets, mentioning each of the rules that
are contained in them and the reasons for their design. In chapter 6, we perform a
wide range of experiments and proceed to analyze them by evaluating how the out-
puts were affected by each rule-set. We focus on one configuration with more detail,
while still analyzing every experimental procedure in order to perform a complete
study of the RL Tuner. Finally, in chapter 7, we summarize the work done in this
project and explicitly denote the findings that can be concluded after the experi-
ments and analysis mentioned in previous chapters. We finish by suggesting future
developments for this project and proceed to prove their viability by performing two
proofs of concept.

3

Chapter 2

Background

In this chapter we will explain the technical and domain knowledge which will be
necessary to understand this project in its entirety. We begin by mentioning the
origin of neural networks, specifically RNNs and LSTMs. Then we move on to speak
about previous attempts to apply Deep Learning to music composition, discussing
their achievements and limitations. We move on to speak about GANs, summarizing
the four main projects that have used GANs for music generation. We mention some
other relevant projects in this area, and conclude by defining the Markov Decision
Process for this project and explaining the algorithm behind Deep Q Learning and
how it will be applied. Finally, we define some fundamental music theory concepts
which will be essential to understand the original work presented later.

2.1 Overview of recent work in Deep Learning, Rein-
forcement Learning and artificial music composi-
tion

2.1.1 Recurrent Neural Networks

The first and most evident approach for artificial music composition has been through
the use of recurrent neural networks (RNNs). This type of network played a sub-
stantial role in the Deep Learning revolution by providing a way to model complex
sequences with various dependencies. The building block for this kind of architec-
ture was, of course, the research performed by Hopkins [8] during the 1980’s, which
introduced neural networks to the world of computing.

In any case, the first network that can be accurately compared to modern RNNs was
brought to life by Elman, simplifying the previous architecture by Jordan [9]. Its
structure was based on a traditional feedforward network, with the addition of a re-
current connection between the current hidden layer and the previous hidden layer
(considering the sequence as a series of time-steps). This weighted edge provides a
much needed context which is passed between time-steps and allows for the model-
ing of dependencies through time. In simpler terms, this makes it so that the output

4

Chapter 2. Background 2.1. DEEP LEARNING/RL

at a certain point in the sequence is dependent not only on the input at that time but
also on the previous inputs. Elman demonstrated that this network could indeed be
trained to learn long-term dependencies relatively well. The training was done using
backpropagation, which begins by providing an input and the expected output (ac-
cording to data) and propagating the input forward with the current weighted edges.
Then, the observed output is compared to the expected output using a loss function
which produces an error. This error is propagated backwards (hence the name of
this method), performing gradient descent on the loss with respect to the weights of
the edges. In this case, the algorithm used is specifically backpropagation through
time, which expands on the previous concept by propagating the error through time.

As the popularity of Recurrent Neural Networks grew, the extent of their limitations
became increasingly apparent. Although these kind of architectures were rapidly ap-
plied to sequential tasks such as Natural Language Processing and even music gener-
ation [10], it was clear that none of the current variants could accurately maintain a
state through time which could consistently model long term dependencies between
sections of the sequence. The necessity for an improvement in this regard led to the
creation of the Long Short Term Memory Cell [1]. The general idea behind LSTM
Cells is that they allow for the propagation of the state of the network by not directly
subjecting it to an activation function at every time-step. Instead, the state flows and
is altered by the input through three gates: a forget gate, an input gate and an output
gate (1, 2 and 3 in figure 2.1). This design means that the Cell itself can model the
varying importance of the previous inputs through an ever-changing state which can
be tuned with much more detail. In this way, it was possible to structure Recurrent
Neural Networks around these new cells for better performance in sequential tasks.

With this substantial leap in performance for RNNs came, of course, better per-
formance for artificial music composers. This started with the first attempt to use
LSTM Networks for music composition by Eck [12]. As there were no previous at-
tempts at the subject, this study set a lot of the standards for AI in music generation.
The experiments are performed using LSTM’s optimized with a cross-entropy func-
tion. The data is composed of one-hot vectors representing each time-step where 1
means that the note is being played and 0 means it is not. Chords are allowed to
contain a range of 12 notes and melodies have a range of 13 notes. This is a simple
yet reliable data representation which is not very distant from the one used in state
of the art projects currently. It is worth noting that chords are represented through
their notes and not symbolically, i.e., a C major is not represented as a 1 in a one-hot
vector, but as C=1 E=1 G=1. This is a bold choice since it expects the network to
learn how to form chords instead of selecting one of them from a predefined list.
The conversion between standard annotated formats such as MIDI and this one hot
vector is not clear in this paper, which could imply that the one-hot vectors were
made manually.

In this study, the authors carried out two experiments. The first aims to simply
learn chords, while the second aims to learn chords and melodies. The training

5

2.1. DEEP LEARNING/RL Chapter 2. Background

Figure 2.1: Schematic representation of the LSTM Cell, where c(t) represents the state
or memory of the cell, h(t) is the output, σ and tanh represent activation layers, xt is
the input of the cell and ht is the hidden output. [11]

data is composed of chord/melody examples in the blues style formulated by hand
with random variants. This clearly shows that this research is attempting to recreate
musical sequences with slight noise and not actually attempting to simulate creativ-
ity, which constitutes a very important distinction. The first experiment works well,
with the full chord sequence (which is present in all of the data) being learned with
relative ease with a single layer LSTM (one input layer, one hidden layer and one
output layer). The second experiment learns the chord sequence first and, once it is
learned, composes music freely. Again, the data is quite restrictive but the melodies
generated model the training pieces quite well. In the end, this paper sets realistic
goals and achieves them with impressive consistence, marking a big step for the area
of music composition using AI. In the following years, LSTM’s slowly took over in ar-
eas requiring the modeling of complex sequential tasks such as Speech Recognition
or even Protein Homology Detection. The following paragraphs shall focus on the
most interesting recent projects in artificial music composition using LSTM networks.

Google Magenta is a lab tasked with recreating art using AI, and many advances in
this area have been attributed to its members. This is mainly due to the fact that they
have created a solid open-source framework for artificial music composition, but
their experimental models for this purpose are what make them a recurring name in
the research world. Of these models, there are two which seem to be particularly in-
teresting for the future of AI. The first of these is the Reinforcement Learning Tuner
[2]. This project aims to build upon the traditional LSTM architecture for music
composition mentioned previously with some previously determined human knowl-
edge about music theory. Specifically, the model uses (Double) Q-Learning (among

6

Chapter 2. Background 2.1. DEEP LEARNING/RL

other RL variants such as Psi-Learning or G-Learning) to explore a state space in
which the actions are the new notes, the states are the previous notes and the re-
wards are determined by a mixture of the probability of the new note according to
the (pre-trained) LSTM network and its adherence to general music theory rules , in
this case directly taken from Gauldin [13] and implemented manually. This leads to
substantial improvements on traditional RNN outputs, with pieces sounding much
more reasonable and consistent. This statement gains a somewhat objective quality
since the outputs generated by this architecture were much preferred to the pre-RL
generations, according to a study performed on Mechanical Turks.

The second model requires some background knowledge. As stated earlier, LSTM’s
were meant to improve on the traditional RNN’s ineptitude for modeling long term
dependencies by using a new type of cells which allowed for the state to pass more
smoothly and to be easily fine tuned between time-steps. However, the fact of the
matter is that due to the nature of backpropagation, it is common to come across is-
sues such as exploding or vanishing gradients. In short terms, this issue occurs when
the gradient of the activation function is too large or too small and it is multiplied
repeatedly in order to find the gradient to perform gradient descent on the weights
of the network. This means that the gradient descent will either become too steep
or too slow, which will harm performance either way and cause the state to not be
influenced fairly by all of the previous inputs in the sequence. This issue combined
with the fact that the design of the LSTM cell is not perfect (does not guarantee a
state which is truly representative of the previous input) once again kickstarted a
search for more accurate ways of capturing long term dependencies. This search
once again led to an iconic paper, which introduced attention mechanisms.

The paper by Bahdanau [14] was elaborated in the context of machine translation
(translating from one human language to another such as English to French) us-
ing neural networks, in this case an encoder-decoder architecture. The idea was to
use a context vector for each time-step which was influenced by every other time-
step. Specifically, this vector was a sum of annotations, one for each time-step, with
trainable weights associated with them. These annotations are the concatenation of
a forward hidden state and a backward hidden state calculated by a bi-directional
LSTM network, and are meant to represent the state of the network at that time-step.
This allows for the network to “pay attention” to any of the previous states of the
network in order to generate the output. This is useful in translation, for instance
when we want to translate the word “the” to French, it is useful to check the next
word for its gender, to know if we should output “le” or “la”. Some researchers found
this idea so impressive that they followed up on it, claiming it would replace RNNs
altogether [15].

This concept was adopted by Google Magenta to produce the Attention RNN [6]. In
this case there is no encoder/decoder, the LSTM network works in the same way but
it uses an attention mechanism to take into account previous inputs in the form of a
context vector. This is a somewhat simplified version of the original concept, but it

7

2.1. DEEP LEARNING/RL Chapter 2. Background

Figure 2.2: Scheme explaining the use of attention mechanisms for the original encoder-
decoder architecture used for neural machine translation. [16]

works to great effect, producing melodies that seem to have more structure, follow-
ing up on the priming melody as a sort of motif. It is worth noting that this project
also produced another model called Lookback RNN, which is a more brute-force
way of taking into account previous elements of the composition, and (arguably)
produces less interesting outputs.

Apart from Google, some very interesting projects focusing on LSTM’s for music
have appeared very recently. The first of these [17] is inspired by a Youtube video
titled “Songs From Pi” and introduces some interesting contributions. This project
aims to compose pop songs hierarchically by composing a melody, then chords con-
ditioned on the melody and then drums, also conditioned on the melody. This makes
for four layers, two of which are dedicated to the key being pressed and the dura-
tion of the press during the melody. The network used for the melody generator is
a two-layer Lookback LSTM (as introduced by Google magenta [6]) which is also
conditioned on a scale randomly sampled from 4 common pop scales and a melody
profile. The melody profile is perhaps the most exciting aspect of this paper, but it is
not given much attention by the authors. It attempts to model the general flow of the
piece by classifying every two bars of it as one of ten clusters via k-means. Therefore,
we get a sequence of one-hot vectors which can portray the ups and downs of the
song. This is an extremely valuable idea since it is attempting to imbue music with a
specific structure, which is a quality most artificial composers are severely lacking. The
architecture is trained on over 100 hours of pop music and the outputs generated
are generally pleasing, while not exactly revolutionary.

Another recent paper which presents interesting concepts in this area is Jambot [9],
which composes polyphonic melodies accompanied by chord progressions. This ar-
chitecture uses a chord LSTM to compose a chord progression, which then conditions

8

Chapter 2. Background 2.1. DEEP LEARNING/RL

the melody LSTM to compose polyphonic music freely. Apart from the polyphonic
aspect, this is not novel content. The dataset used is a heavily modified version of
the widely used Lakh repository [18]. The pieces that are kept are the ones adhering
to major/minor scales, and all of these are shifted to the root note of C. This makes
for a more consistent dataset but conditions the generation to compose in C major/
C minor, which may be seen as slightly oppressive. The chords are extracted by ana-
lyzing the three most frequent notes in each bar and assuming that to be the chord
applied. This is also questionable since it excludes non-triad chords and constitutes
a substantial approximation. The interesting aspect is that these chords are repre-
sented as word embeddings in Natural Language Processing, which means that only
the most frequent triads are given an ID and can be visualized in relation to each
other. This leads to the most exciting conclusion of this paper which is that the net-
work forms the proper triads and it is able to extract the circle of fifths, which can be
visualized through the ”chord embeddings”. This shows the power of artificial com-
posers and proves that, in this field, ambitious goals can lead to remarkable findings.

The third paper that is worth noting is DeepBach [19]. This project is substantially
more focused than the previous ones, since it attempts to emulate a very specific
style of songwriting: Bach chorales. These consist of three voices that accompany a
main melody, which were written by hand by Bach (and other musicians) to create
layered harmonies in musical pieces. One of the main contributions presented here
is the novel data representation, which is more complex than the traditional Piano-
roll or even the Magenta encoding. Firstly, it divides the melody into four voices,
which is evidently necessary. It also introduces a boolean which is set to 1 if there is
a fermata symbol over the current note (indicating that it should be prolonged) and
it identifies each time-step with its beat subdivision (an integer between 1 and 4).
The architecture used here is quite complex. Two deep recurrent neural networks
sum up past and future time-steps, and their outputs are concatenated with the out-
put of a neural network with one hidden layer which takes the current time-step as
input. This vector is then fed into a neural network identical to the previous one,
which produces our note probabilities for each voice. Gibbs sampling is then ap-
plied to generate the voices, choosing a random time-step and a random voice and
sampling from the conditional probability distribution pi(V t

i |Vi,t) given by the neural
network. This intricate method means that we can re-harmonize any melody with
very convincing results, which can be tested by using the simple software developed
to make this process easier for musicians.

A note about gradient descent and the Adam optimizer:

Gradient descent [20, 21] is the method with which we optimize the weights of
a neural network. Specifically, if we are trying to optimize a function f with respect
to its parameter θ, we can perform gradient descent by updating the parameter θ in
the following way:

θt+1 = θk − γk∇f(θt) (2.1)

9

2.1. DEEP LEARNING/RL Chapter 2. Background

where γt >= 0 represents the learning rate (or stepsize), which determines how
much the parameter is affected by one step of the descent. To smooth out this
descent we can apply a method known as momentum. This involves taking into
account previous gradients when updating the current parameters, which is very
useful when the gradient is only estimated. The addition to the original formula can
be seen below:

θt+1 = θt − γt∇f(θt) + αt(θt − θt−1) (2.2)

where:

θt − θt−1 = −γt−1∇f(θt−1) (2.3)
αt ∈ [0, 1] (2.4)

In this new equation, αt controls the momentum of the descent. There is, how-
ever, a third major improvement that can be done over this method. Calculating
the gradient of the loss when using Recurrent Neural Networks, for instance, can
be computationally expensive. This means that by using the whole dataset for each
step in the gradient descent we have to calculate this gradient for every element of
the dataset, which can make this process extremely slow. The idea behind stochastic
gradient descent is to sample a mini-batch of the dataset (the size of which we can
set as a hyperparameter) and using this as an estimate for one gradient descent step
instead, in order to make steps which may not be as well guided or steep, but which
can be done more quickly. This method, combined with momentum, can lead to
great results since the momentum compensates for noisy gradient estimates and the
descent can proceed at a faster computational pace.

As statistical methods have developed in the context of Artificial Intelligence, the
concept of gradient descent has been perfected and extended to multiple specific
optimization methods. The algorithm which we will use in this project and which
has been used extensively in Deep Learning is the Adam optimizer [22, 23]. This
algorithm encompasses two substantial improvements to the previously mentioned
stochastic gradient descent. The first of these is using an adaptive learning rate for
each of the parameters (weights of the network). This means that the weights which
affect frequent features are given a lower learning rate than weights which affect
rarer features. This is beneficial if we are dealing with sparse gradients, which can
be the case in Natural Language Processing and, of course, music composition. The
second improvement can be described as a more complex momentum mechanism.
Specifically, the descent takes into account past gradients (mt) as well as past gra-
dients squared (vt), which allows for a more controlled momentum applied to the
descent. These values are calculated as such [22, 23]:

mt = β1mt−1 + (1− β1)gt (2.5)
vt = β2vt−1 + (1− β2)g2t (2.6)

However, these variables are initialized to zero and are therefore biased towards
that value. This typically happens when β1 and β2 are close to 1, which means that

10

Chapter 2. Background 2.1. DEEP LEARNING/RL

the updates to these variables at each time-step are rather small, forcing them to
stay around their initial value of zero. To counter-act this, we apply the following
transformation, which will raise the values of mt and vt when β1 and β2 are close to
1 [22, 23]:

m̂t =
mt

1− βt1
(2.7)

v̂t =
mt

1− βt2
(2.8)

Finally, these variables are combined in the final update formula for the weights
(θt+1) [22, 23]:

θt+1 = θt −
γ√
v̂t + ε

m̂t (2.9)

where epsilon represents a very small value to avoid division by zero, which would
interrupt the computational process. This algorithm is shown in [22] to be quite
effective, hence its generalized use in Deep Learning.

2.1.2 Generative Adversarial Networks

During current times, it is nigh impossible to study generative methods in Deep
Learning without coming across Generative Adversarial Networks [24]. This archi-
tecture was developed by Ian Goodfellow et al. in 2014 and since then it has become
a staple for image generation and has recently been gaining popularity in other areas
as well, such as music generation. The general concept that supports this framework
is simple: one network generates a realistic output (generator) and the other net-
work attempts to distinguish between this output and real data (discriminator). This
makes for a game of cat and mouse which is ruled by a general min-max function
[24]:

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1D(G(z)))] (2.10)

Gradient descent is then performed on both networks using this function, meaning
that the generator function G must be differentiable, which is an issue for discrete
outputs as will be mentioned later. This descent supposedly leads to the global min-
imum, meaning that the distribution of the generator is equal to the distribution
of the data in order to perfectly fool the discriminator. This is often not the case
and, although the local minimums can lead to successful generators, this network
has severe issues with mode collapsing, which consists of focusing on fooling the
discriminator on a limited number of classes of data and then only generating those
classes. This is evidently an issue because it does not model the whole distribution
and therefore the generator becomes a warped version of what is intended. Regard-
less, GANs have experienced massive success in image generation because they stray
away from the traditional blurry outputs of regular networks and generate concrete
images. This happens due to the nature of this network: the generator must focus on
specific aspects of the data in order to fool the discriminator, which means it cannot

11

2.1. DEEP LEARNING/RL Chapter 2. Background

keep producing blurry, safer outputs.

Regarding the previously mentioned issue about non-differentiable generator func-
tions for discrete outputs, Goodfellow [25] mentions three distinct solutions:

1. REINFORCE algorithm [26].

2. Using the concrete distribution [27] or Gumbel-softmax [28].

3. Training the generate to sample continuous values that can be decoded to dis-
crete ones (e.g., sampling word embeddings directly).

These three approaches are essential to fully understand how to model discrete se-
quential data using Generative Adversarial Networks.

The first attempt at music composition using GANs lies in SeqGAN [29]. This project
focuses on a broad range of sequential applications, having only a small section ded-
icated to music composition. However, the aspect of it that makes it an interesting
and essential piece of research is how it implements the first solution mentioned
above: the REINFORCE algorithm. In this paper the generator is an LSTM network
and the discriminator is a convolutional neural network, which are fairly reasonable
choices to model sequential input. The trick applied here is based on modeling the
generator as a stochastic differentiable policy which is rewarded based on the dis-
criminator output. This represents our min-max function and we therefore perform
the gradient descent using the policy instead. Evidently, this involves calculating Q
values (state-action values), which are computed using Monte Carlo search. The
complete algorithm works by initializing the generator and the discriminator using
Maximum Likelihood Estimation (MLE) and Cross-entropy respectively, and then
performing policy gradient descent. The results are tested using an oracle, which is a
representation of the actual data distribution that can then be easily compared to the
generator distribution to gauge its optimality. The experiments performed on music
generation use the Nottingham dataset (consisting of 1000+ folk music pieces) and
manage to outperform traditional MLE. Not many details about this experiment are
mentioned since it is clearly not the focus here, but this paper is nevertheless rele-
vant due to its interesting methodology for dealing with discrete outputs in GANs

Following this paper came C-RNN-GAN [3], focusing fully on music composition.
The architecture is again quite simple: the generator is a Deep LSTM network and
the discriminator is a bi-directional Deep LSTM, which is a solid choice since the dis-
criminator is a classifier and can afford to be bi-directional. The data representation
used is arguably novel and consists of four identifiers per time-step: tone length,
frequency, intensity and time spent since the previous tone. The experiments con-
sist of comparing the outputs to the data and to the baseline, which uses an LSTM
with MLE. Backpropagation through time is used, which is expected, but also freez-
ing [30] and feature matching [30]. Freezing consists of stopping updates to the
Discriminator (D) when its training loss is less than 70 % of the Generator’s (G)
training loss. This is a very effective way to keep the training of G and D balanced,

12

Chapter 2. Background 2.1. DEEP LEARNING/RL

which is crucial for successful results with GANs [25]. Feature matching, on the
other hand, means adding regularizers to the min-max equation to ensure that the
generated distribution resembles the original distribution, preventing the previously
mentioned problem of mode collapsing to a certain extent. One final relevant aspect
about the training is that a (very simplified) form of curriculum learning [31] is ap-
plied, in the sense that the training begins with short snippets of MIDI and increases
their length as the training advances.

The outputs are evaluated using a somewhat arbitrary set of measures (as usual),
but one of them - ‘Repetitions’, measuring the amount of subsequences which are
repeated - led to some very revealing results. As we can see in figure 2.3, this metric
is very low for all of the generated outputs but it is substantially higher for the real
data. This leads us to conclude something very apparent when listening to samples from
various projects in this area: the music lacks a motif which is repeated and modified
throughout the song, providing a feeling of consistency and structure. This is a very
important issue, which should be addressed if we expect to produce lengthy outputs
which resemble human composed music. In the end, the outputs of this project are
comparable to standard LSTMs but reportedly sound more interesting, which might
have to do with GANs collapsing to a specific style (as in the blurry images example
mentioned earlier).

Perhaps the most groundbreaking piece of work using GANs for music composi-
tion is MIDINet [4]. This is due to the fact that it relies fully on convolutional neural
networks to generate music pieces, which is largely unprecedented. The general
architecture is based upon DCGAN [32], perhaps the most influential architecture
for GANs, which is shown to be quite effective at generating images and has some
notable features such as vector arithmetic for images. MIDINet uses CNNs for the
generator and discriminator, based on this architecture, but also involves a condi-
tioner CNN. It also uses the bar (which is a set of notes, defined in section 2.2) as
its compositional unit, whereas traditionally a sixteenth note time-step is used. The
generator consists of fully connected layers followed by transposed convolutional
layers which “upscale” the one-dimensional input, while the discriminator consists
of a few convolutional layers followed by some fully connected layers. The condi-
tioner CNN is essentially the reverse of the generator, downscaling a piano-roll chunk
(2D) into a one-dimensional condition which can then be fed into the generator.

In summary, the generator can be conditioned through the one-dimensional it gets
from the conditioner CNN and through adding a one-dimensional conditioning vec-
tor to its layers [33], which means it can be conditioned on two different inputs
(the same is done for the discriminator). This leads to an experiment in which the
generator and discriminator are trained with the previous bar as the 2-dimensional
condition and the current chord as the one-dimensional condition (a one-hot vector
representing the chord symbolically). It is worth mentioning that feature matching is
employed (which could be crucial for successful results) and that, unlike RNNs, the
generator can compose without a priming melody to get the network started, instead

13

2.1. DEEP LEARNING/RL Chapter 2. Background

Figure 2.3: Graphs comparing various evaluations measures between artificially gener-
ated and human composed musical pieces.[3]

using a randomly sampled one-dimensional vector as an initial input. This process
emulates the recurrent aspect of a traditional LSTM with resounding success, lead-
ing to results which, according to a user-study, are comparable to the three Melody
RNN variants proposed by Google Magenta. This is extremely impressive since this
approach represents a completely new direction for the field of music composition
using deep learning and already boasts promising results.

Following MIDINet’s exciting results came its successor, MuseGAN [18]. This paper
builds on the core concept of MIDINet and expands it to compose multi-track poly-
phonic music with a distinctly modeled structure. Multi-track interdependency is, of
course, a very important aspect in music with various instruments playing simulta-
neously. Here it is represented in three different ways: the jamming model, which
has various generators compose melodies which are then judged by their respective
discriminators; the composer model with one generator composing all the tracks
and then evaluated by one discriminator; and the hybrid model with various gener-
ators evaluated by one discriminator. An attempt at producing music with consistent
temporal structure is made by conditioning the bar generation on a vector which
contains temporal and rythmic information. This results in two temporal models:

14

Chapter 2. Background 2.1. DEEP LEARNING/RL

generation from scratch, which maps a noise vector to a sequence of temporal con-
text vectors; and track-conditional generation, which generates these same vectors
based on a human-composed track, attempting to continue the musical piece. In the
end, this leads to a very complex global architecture that deals with vectors model-
ing intra-track or inter-track information which is dependent or independent of time.

The experiments are performed using the Lakh Dataset [18], which is extended by
adapting external data to its format. The music is composed for five instruments:
bass, drums, guitar, piano and strings. The outputs are evaluated using some fairly
generic metrics such as ratio of empty bars, and also some interesting ones such as
tonal distance [34], which describes the harmonicity between two tracks. The re-
sults sound quite decent and the experiments made show that batch normalization
is essential and that there may be an issue with the way inputs are binarized (which
is caused by using the third solution mentioned by Goodfellow [25]). A user study
is conducted, indicating that the hybrid and jamming models are the most pleasing.
In conclusion, MuseGAN is an extremely ambitious project, which ends up fulfilling
its general goals with surprising success, even if the final outputs are very far from
what is expected from human composers (whereas in monophonic, single track arti-
ficial composition they appear more plausible). The following table summarizes this
section adequately:

C-RNN-GAN MIDINET MuseGAN SeqGAN
Date (mm/yy) 11/16 3/17 9/17 9/16
GAN Type GAN DCGAN WGAN-GP Discrete GAN
Solution 3 3 3 1
D Model LSTM CNN CNN CNN
G Model LSTM CNN CNN LSTM
Music Repre-
sentation MIDI, new

format
MIDI, chords Multi-track

Piano-roll
MIDI

Compositional
Unit Note Bar Bar Note

Dataset hyperlink 1 hyperlink 2 hyperlink 3 hyperlink 4
Curriculum
Learning Partially No No No

Poliphony Partially No Yes No
Evaluation
Metric Yes No Yes Yes

Feature Match-
ing Yes Yes Yes No

Open-source
code hyperlink 1 hyperlink 2 hyperlink 3 hyperlink 4

Framework TensorFlow Tensorflow Tensorflow Tensorflow/
Pytorch

Table 2.1: Overview of previous projects using GANs for musical composition

15

https://github.com/olofmogren/c-rnn-gan/blob/master/music_data_utils.py
https://www.hooktheory.com/theorytab
https://salu133445.github.io/lakh-pianoroll-dataset/
http://www-labs.iro.umontreal.ca/~lisa/deep/data/
https://github.com/olofmogren/c-rnn-gan
https://github.com/RichardYang40148/MidiNet
https://github.com/salu133445/musegan
https://github.com/LantaoYu/SeqGAN

2.1. DEEP LEARNING/RL Chapter 2. Background

2.1.3 Other methods applied to music composition

The first and most important project which falls out of range of the two previous sec-
tions is WaveNet [35]. This paper presents a novel generative model for raw audio
which does not rely on any kind of RNN. Instead, it uses dilated causal convolutions,
which are convolutional layers which skip input values at certain steps (for step 1 it
uses all the units, for step 2 we use every other unit, etc.) and are stacked on top
of each other to produce an output (1 unit) which is based on a very large input,
depending on the amount of convolutions and their dilation (step). The output is
produced step by step based on the previous time-steps, which resembles the look-
back effect of recurrent neural networks , in a way which can only be intuitively
understood by analyzing figure 2.4. The problem here is also a reminder of the issue
with RNNs: how to consider more previous time-steps when producing the current
output. In this case, this problem is formulated as how to increase the receptive field
(the amount of input units which participate in the convolutions which lead to the
output), which can be done by increasing the dilations and the number of layers, or
even by conditioning the network locally on a context stack.

Regardless, this process led to state-of-the-art Text to Speech performance, being
limited only by the fact that generation is extremely slow due to the fact that the
generation does not allow for much parallelization. Regarding music, the training
is made using two relatively generic datasets of continuous audio since WaveNet
does not use annotated data. The results are interesting but quite bizarre, featuring
compositions that start off slow but ramp up the note density very fast. Even so,
these are very impressive results for raw audio, which is not even attempted by most
projects in this field, and a large receptive field is said to be crucial for realistic sam-
ples, which is not surprising. This architecture received a substantial update in the
form of Parallel Wavenet [36], which introduced Probability Density Distillation and
a Teacher Student Model, allowing for an effective parallel process which seriously
improves generation speed.

Another approach which is unquestionably valuable for music composition is the
application of Variational Auto-encoders (VAEs), explored by Sabath et al. [37].
In broad terms, VAEs include an encoder, which compiles all of the data into one
encoding that models it in some way. Then we simply sample from this encoding
and translate the sample into real generations using a decoder which should mir-
ror the encoder. This leads to a model which is truly generative since we can sample
from this encoding without initializing any variables which may bias the composition
(such as the priming melodies used in previous projects). This paper uses a specific
VAE originally used for image generation entitled DRAW (Deep Recurrent Attentive
Writer), which computes the output sequentially, not unlike a traditional RNN. The
encoder and decoder are modeled as single-layer LSTM networks, as would be ex-
pected. The main limitation here is that the VAE can only produce outputs of the
same size as its training data. This leads to two issues: the need to use truncated
data chunks and the inability to write long compositions without substantial changes
to the model.

16

Chapter 2. Background 2.1. DEEP LEARNING/RL

Figure 2.4: The dilated convolutional layers used in WaveNet. The receptive field here
is of size 16. [35]

The data used is composed of various Beethoven Piano pieces in the MIDI format,
and they are translated to the raw encoding used in most other research papers. The
interesting aspect is the objective performance measure introduced, which works
by comparing the identity vectors of artificial compositions and real musical pieces.
These identity vectors are composed of 17 features meant to characterize the high
level sound of each piece which include the number of notes in it and the amount of
polyphony throughout its time-steps. Then, one vector can be compared to a Corpus
of pieces by using the Mahalanobis distance, given by:

D(x,D) =
√

(x− µ)TΣ−1(x− µ)) (2.11)

This leads to very compelling results, showing that a corpus from a specific distri-
bution is quite close to other corpora of the same kind and quite far from corpora
made of randomly generating music. In the end, the generated pieces which attempt
to model Beethoven are shown to be quite close to the original corpus, suggesting
that this architecture produces realistic results. In essence, the main contributions
here are the demonstration of VAEs as music composers and the introduction of an
objective, mathematically and musically motivated evaluation measure.

One final tool which is applicable in a wide range contexts including music gen-
eration is Curriculum Learning [31]. This technique was mentioned in C-RNN-GAN
[3], but its application was very simplified, using chunks of music of increasing size
without seriously considering their content. In general terms, the idea behind Cur-
riculum Learning comes from learning at a human level, in the sense that we learn
better if we start with the basic and move through increasingly complex concepts
and challenges in order to become experts. Although it might seem counterintuitive
to compare machines to humans in this regard, this method can be seen as a sort of
simulated annealing (which is a staple in Artificial Intelligence) to guide the learning
to the global minimum when dealing with non-convex loss functions.

In this specific paper, two promising statements are made and tested using toy ex-

17

2.1. DEEP LEARNING/RL Chapter 2. Background

amples: cleaner (less noisy) examples may yield better generalization faster, and in-
troducing gradually more difficult examples speeds-up online training. These would
already indicate that curriculum learning is a suitable method, but some more com-
plete experiments are also performed. The first of these trains a neural network
to recognize arbitrarily noisy shapes. Starting the training with non-noisy shapes
and slowly introducing noise leads to a noticeably lower error rate than just using
randomly noisy examples, supporting the first statement. A second experiment is
made with a language model that predicts the next word in a sentence, which is
easily comparable to music composition. Starting the training with the 5000 most
common words in the English Language leads to better long term results than sim-
ply sampling from the full vocabulary randomly, supporting the second statement
mentioned above. These evidently interesting results, combined with the fact that
this work has been the target of various follow-up research papers [38, 39, 40], sug-
gests that curriculum learning could very well be useful in the area of artificial music
generation and should be explored for this purpose with more detail.

2.1.4 Deep Q Learning in the context of music generation

In this section we will focus on the RL Tuner architecture introduced by Magenta
[2], which we mentioned earlier, and explain its theoretical background.

The foundation of modern Reinforcement Learning is the Markov Decision Process
(MDP) [41]. This process defines an environment which can easily describe a large
amount of real world problems. This environment is explored by an agent which can
perform actions to transition from one state to another at every time-step. According
to his state and action, the agent receives a reward. The agent seeks to maximize
the total reward he receives at every time-step until the end of the exploration. By
definition, an MDP is defined by a vector of 6 elements: 〈S ,A,Pass′ , γ,Ra

ss′ , π〉. We
proceed to explain these below:

• The state-space S - This is a set which contains all of the possible states our
agent can be on at any time-step. In the case of RL Tuner the state consists of
the LSTM states of the Q-network and the Reward RNN, and also the compo-
sition so far. Since the LSTM state of a cell encompasses a continuous range of
values, the state space can be described as continuous.1

• The action-space A - This determines the possible actions that the agent can
take at any time-step. In our case, this is the note that we will compose next,
which can be one of 38 possible values.

• The transition probability Pass′ - Given a state and an action, this gives the
probability of the next state in the environment. In this case, this concept is
not explicitly defined, and the transition is determined by running the note
through the reward RNN and the Q network and observing their new states.

1However, in the case of RL Tuner, there are only 38length of composition. possible compositions, so the
number of possible states is not infinite, even if it is described by continuous values in the LSTM state

18

Chapter 2. Background 2.1. DEEP LEARNING/RL

• The discount factor γ - This value between 0 and 1 will determine how fu-
ture rewards will be valued by the agent, which can drastically influence its
judgment (the choice of action at each state). Its specific role is mentioned
later.

• The reward function Ra
ss′ - This will determine the reward that the agent re-

ceives at each time-step, depending on his state and action. In our case, the
reward depends partially on the Reward RNN and partially on music theory
rules which decided the reward based on the action and the previous compo-
sition.

• The policy π - This determines the action that should be taken at a certain
state. This is what we seek to learn (which note should be played for a specific
state of the composition).

After defining the MDP rigorously (as we have done above and in the source code
[5]) we can move on to analyze the process of learning a policy. The process applied
in this project is, as mentioned earlier, Deep Q Learning, but in order to understand
this concept properly we must first define Q values and Q Learning [41, 42].

In short, Q(s, a) represents the reward that will be attained by performing action
a while in state s. This is calculated in the following way :

(st, at) = rt + argmaxaQ(st+1, at+1) (2.12)

where rt is the immediate reward determined by the reward function. Here we
clearly see the role of the discount factor as mentioned before. By learning to es-
timate the Q values at each time-step we can intuitively learn which action to take
at each state in order to maximize the reward. This incremental process is denoted
as Q Learning and it is based on exploring the environment and estimating the Q
values based on the agent’s experiences, updating the Q Values with the following
formula:

Q(st, at)→ Q(st, at) + α(rt+1 + γQ(st+1, at+ 1)−Q(st, at)) (2.13)

where α represents the learning rate (the rate at which new experiences influence
the Q value). There are also two different ways of learning/exploring: on-policy,
in which the exploration is made with the same policy that is being learned, and
off policy, where there is a separate exploration policy which is independent of the
policy that is being learned. A common alternative to these two extremes is ε-greedy
exploration, which combines on-policy and random exploration according to the
following formula:

π(s, a) =

{
1− ε+ ε

|A(s)| , if a = a∗ = argmaxaQ(s, a),
ε

|A(s)| , if a 6= a∗.
(2.14)

where a is the action taken, a∗ is the greedy action (the action which apparently
yields the highest reward) and |A(s)| is the number of actions possible in that spe-
cific state.

19

2.1. DEEP LEARNING/RL Chapter 2. Background

With the development of Deep Learning and its impressive results with statistical
prediction tasks, the neural network clearly appeared as a reasonable way to esti-
mate the Q values. Specifically, Deep Learning was seen as the perfect tool for this
procedure since its only limitation is needing a very large amount of data. This is
(to a certain extent) not a problem in RL since we can simply create an arbitrarily
large dataset by exploring the environment. This led to a paradigm in Reinforcement
Learning: Deep Q Learning [43]. This technique was introduced by Google Deep-
mind and it essentially aimed to perform Q Learning using a deep neural network
to estimate the Q Value (know as Deep Q-network), rather than performing the
traditional algorithm. This paper introduces a technique known as experience re-
play, which involves performing exploration (using, in this case, an ε-greedy policy)
and storing the agents experiences of the form et = (st, at, rt, st+1) in an experience
buffer, which will constitute our dataset. After performing one step of exploration
and storing the experience, we sample a random minibatch from our experience
buffer and perform a gradient descent step on the following equation:

(yi −Q(φj, aj; θ))
2 (2.15)

where

yi =

{
rj, for terminal φj+1

rj + γ maxa′Q(φj+1, a
′; θ), for non-terminal φj+1.

(2.16)

The experience replay method claims two major advantages over standard Q Learn-
ing: 1. It can use the same experience twice (experiences are not removed from
the buffer during training), which means that the same experience can be used for
multiple steps of the gradient descent, which evidently increases data efficiency; and
2. Learning from consecutive samples can be inefficient since they are usually se-
quentially correlated and this can introduce a bias. Therefore, randomly sampling
from the experience buffer allows for a smoother descent and avoids divergence. In
the case of RL Tuner, the Q network is a Recurrent Neural Network, which means
that the gradient descent is made through the process of backpropagation (which
was mentioned in section 2.1.1).

There is, however, one additional technique that is applied in our case, which is
called Double Q Learning [44]. To understand why Double Q Learning is needed, it
is necessary to understand a fundamental issue with the training process described
above. Q estimations are known to be very noisy since the Q Network training pro-
cess is non-deterministic and sometimes not smooth, and it can start fitting the noise
in our dataset. This means that when we calculate yj (as described above), the Q
estimates will be noisy. However, since we want to maximize the Q value, it is likely
that the Q Value with most upward noise will be chosen, and will then be used to up-
date the Q Network. This means that our Network is trained to match a potentially
overestimated value, and since the Q Network in 2.15 and 2.16 is the same, this over-
estimation will propagate and reach unrealistic values. This would be acceptable if
all Q values were overestimated equally, but since they overestimate according to

20

Chapter 2. Background 2.2. OVERVIEW OF KEY MUSIC THEORY CONCEPTS

random noise, this can lead to some Q values being much more overestimated than
others, making our Q estimation noisy and unreliable. This can obviously influence
our finally policy and yield sub-optimal results. However, this issue can be solved
by using two separate networks: the Q network for 2.16 and the Target Q network
for 2.15. This solves the issue of propagating the overestimations and can therefore
improve results, as was experimentally demonstrated in [44]. The two networks can
both be kept up-to-date by symmetrically updating them (switching their parame-
ters often) or by using a slow moving copy of the Target Q network as the Q network
(the latter is used in the RL Tuner). The target for Double Q-learning is therefore
described as:

yi =

{
rj, for terminal φj+1

rj + γ Q(φj+1,maxa′Q(φj+1, a
′; θt); θ

′
t), for non-terminal φj+1.

(2.17)

In the case of RL Tuner, both the Q Network and the Target Q Network are LSTM
networks. This means that the state which is used as input is the LSTM state only.
This would seem contradictory to how the state was described when we defined our
MDP, but we must keep in mind that this LSTM state should be able to convey the in-
formation included in the Reward RNN LSTM state and in the previous composition,
and therefore learning the Q values is entirely possible and fair for the Q network.

2.2 Overview of key music theory concepts

Since a considerable amount of music theory knowledge is necessary to fully under-
stand the intentions of this project, it is evident that some simplified background
concepts must be explained. The following information was mainly gathered from
the following sources: [45, 46]

2.2.1 Fundamentals of music theory

A musical composition can be seen as a sequence of notes and pauses. Notes are
sounds played at a certain time-step with a certain duration and a certain pitch,
while pauses (or rests) represent the absence of notes, so they are conceptually sim-
ilar to notes except for the fact that they do not possess pitch. If we consider the
piano-roll format, we can think of a musical composition as a 2-dimensional matrix.
Pitch represents the frequency of a sound (intuitively, how high or low it sounds)
and it is seen below as how low or high the note is in its column. The time-step in
which a note occurs can be called its time and it is seen below as the position of the
note in its row. The duration of the note defines how long it sounds and it can be
seen as how much horizontal space it occupies in its row (or how many squares it
occupies).

The pitch of a note could be seen as continuous (the frequency of a sound is a
continuous value), but it is commonly divided into a specific set of possible pitches
which increase exponentially in frequency and are represented as the rows of the

21

2.2. OVERVIEW OF KEY MUSIC THEORY CONCEPTS Chapter 2. Background

Figure 2.5: A very simple melody represented in the piano-roll format

matrix. This set is then divided into groups of 12 pitches, which are called octaves.
In figure 2.5 we can see one full octave, which goes from the first note C4 to the last
note C5. C4 represents the relative pitch (C) in the context of the 4th octave. We
can play a note in any of these 12 possible pitches.

Each of the columns can be seen as a beat where a note or pause could be played.
These beats are then grouped into bars, depending on the meter. For instance, if the
meter is X/4, each bar will contain X quarter notes (or pauses), X*2 eight notes or
X/2 half notes. The duration of one single column (or square) is defined a priori,
and we will further on consider it to be one sixteenth note. The meter used will be
6/8, meaning one bar will contain 12 sixteenth notes (12 columns in piano-roll).

If we consider a sequence of notes and pauses without taking into account their
pitches, we are analyzing the rhythm of the piece. If we also take into account the
pitches and the piece is monophonic (only one note is allowed in each column),
we consider it a melody. Harmony, texture and timbre are also fundamental music
theory concepts, but it is unnecessary to define them since they are not relevant for
this project. Note that we will only be considering simple discrete representations
of music, whereas traditional music sheet representation and raw audio have other
complexities.

2.2.2 Fundamentals of melodies

Now that we have understood the nature of musical notes and how they form
melodies, we can explore some more intricate concepts. As previously mentioned,
one octave contains 12 notes, which are separated by one semitone each, forming the
sequence C C# D D# E F G G# A A# B C. Note that E# designates the same note as
F. If instead of taking all of the notes we consider them using the following sequence
of distances: tone (equivalent to two semitones) tone semitone tone tone tone semi-
tone, we get a major scale: C D E F G A B C (in this case, C major scale, since it starts
with the note C). This is an organization of these notes in a way that makes them
sound adequate in direct or indirect sequence. The first note of the scale is know as

22

Chapter 2. Background 2.2. OVERVIEW OF KEY MUSIC THEORY CONCEPTS

the tonic. There are many different types of scales, but the ones which are relevant
for this project are the major scale and the minor scale. The minor scale is defined by
the following sequence of distances: tone,semitone,tone,tone,semitone,tone,tone.

As stated previously, a scale only spans one octave. However, if we consider the
C Major scale in every octave, we are considering every note in the key of C Major.
A piece can be described as being in the key of C Major if its notes are (mostly)
contained in this set of notes. It is worth noting that the key of C Major also contains
the notes of every A minor scale, and therefore the key of C Major and the Key of
A minor can be seen as the same set of notes, although musical pieces in these two
keys can differ somewhat due to the choice of notes from this set. Formally, A minor
is described as a mode of C Major, which means that it uses the same notes as the C
Major Scale but starts from a different note (a different tonic). There are evidently
other modes but for the context of this project this topic is not worth exploring in
depth.

Once we grasp the concept of a scale and key, we can start understanding inter-
vals. An interval is the distance between two notes in a key. For instance, if we are
in the key of C and we play the note C followed by the note D, we have a major
second, which represents the distance between two consecutive notes in this key
separated by one tone. If we played E followed by F, we would have a minor second,
which represents the distance between two consecutive notes in this key separated
by one semitone. The denomination of intervals within the context of a scale or key
is defined according to the following legend: One final concept which is essential for

Length in
semitones

Possible intervals

0 Perfect unison
1 Minor second, augmented unison
2 Major second, diminished third
3 Minor third, augmented second
4 Major third, diminished fourth
5 Perfect fourth, augmented third
6 Diminished fifth, augmented fourth
7 Perfect fifth, diminished sixth
8 Minor sixth, augmented fifth
9 Major sixth, diminished seventh

10 Minor seventh, augmented sixth
11 Major seventh, diminished octave
12 Perfect octave, augmented seventh

Table 2.2: Complete description of all possible intervals according to music theory.

understanding this project is relativity in music. If we analyze our two fundamental
musical concepts - pitch and time - we will see that any melody is relative with re-
spect to these. For instance, a certain melody can start after an initial pause and still

23

2.2. OVERVIEW OF KEY MUSIC THEORY CONCEPTS Chapter 2. Background

Figure 2.6: A very simple example of transposition. Here we see the melody displayed
in 2.6 played simultaneously with a transposed version of this melody (two semitones
above the original). We can see that the intervals and the rhythm remain equal between
the two melodies.

evidently sound the same, meaning that the melody can be placed freely along the
time axis and still sound the same, as long as the duration and relative time-steps of
its notes and pauses are the same. We can also understand that the real duration (in
milliseconds) of the sixteenth note (one square in our piano-roll representation) is
not defined, which means that this as well is relative. This depends on the tempo of
the piece, which can be defined in beats per minute (bpm). This will not be consid-
ered in this project, but it is useful to keep in mind that any melody represented in
the piano-roll format can be played slower or faster without losing its characteristics.
The final element of relativity is, of course, pitch. This is a difficult concept to grasp
without listening to the correspondent audio samples, but if all of the notes in figure
2.5 were shifted one unit (semitone) upwards with respect to pitch, we would have
a melody that would sound the same, but slightly higher. This means that when
we shift every note in a melody with respect to pitch (this process is typically called
transposition and is displayed in figure 2.6) by X semitones, we completely change
the sequence but the relative distance in pitches, duration and time stay the same,
which means that the melody retains its features and musicality. The concept of
transposition will be extremely important for one of the main contributions of this
project.

24

Chapter 3

Dataset

In this chapter we will describe the dataset which we used to train our model. We
begin with a general description of the dataset, explaining the genre which it pertains
to and the reasons for choosing it. We then move on to explain the formats that were
used while gathering the dataset (MIDI and Guitar Pro 5), and how they differ from
continuous musical representations such as raw audio. We end by illustrating how
we collected these files and converted them to a monophonic discrete format.

3.1 General description

The choice of dataset is central to any project in Machine Learning, and artificial
music composition is no exception. Many of the existing projects using recurrent
neural networks have used either popular music [17], classical music [19] or sim-
ply a general compilation of pieces from various different contexts [18]. However,
for this project, we decided to gather a more conservative yet uncommon dataset,
which was made entirely of pieces within the genre of Xota Gallega, a variation of
the Spanish folk music Jota which is practiced in Galicia. The most common melodic
instruments in this genre include the bagpipe and the guitar. The reasons for this
choice were numerous. The first and most important reason was the simplicity and
consistency of the compositions. Pop music, for instance, suffers from extreme vari-
ance between different pieces and can have subtleties and complexities which are
hard to model and describe. Xota does not have this issue since its pieces usually
have similar rhythmic patterns and pitch variations which are repeated throughout
the song. This is helpful in order to manually extract the compositional rules which
the pieces generally adhere to, as we will mention later. Another surprising ad-
vantage to this dataset was the availability of real compositions in discrete musical
formats, namely MIDI and Guitar Pro 5 (GP5). This made it possible to gather a very
consistent and somewhat broad set of MIDI files which could be used to train our
RNN.

25

3.2. MUSICAL FORMATS Chapter 3. Dataset

3.2 Musical formats

There are many possible discrete representations of music. The most well known
of these is of course sheet music. However, this is not a computational format and
its translation to numerical form is not necessarily direct. Therefore, other formats
were developed in order to represent music discretely in numerical, computable
terms. The most common of these is MIDI [47]. In short, MIDI encompasses the
information present in the piano-roll format mentioned in 2.2. It contains the time,
pitch and duration of every note, each of these represented by a discrete value. It
also contains the tempo of the piece (in bpm) and the instrument that plays it, which
is one of a limited set of possible instruments with pre-programmed timbres. For this
reason, it is not reasonable to say that MIDI models the timbre of the composition
given the limited number of choices, whereas raw audio can express this in a con-
tinuous form. MIDI files can also contain multiple tracks, representing the various
melodic lines that are played in parallel during the piece. MIDI files have many other
important characteristics, but this simple description will suffice for the context of
this project.

Guitar Pro 5 (GP5) is another digital format which represents essentially the ex-
act same information as MIDI, as well as some technical information about man-
ually playing the piece, and it is generally used in the context of learning how to
play the pieces on the guitar. Crucially, both of these formats can model polyphonic
music (multiples notes sounding simultaneously), which is what separates them from
the representation that the RL Tuner uses . This means that a conversion between
these formats is required and not necessarily obvious, given that they differ in this
fundamental aspect.

3.3 Collection process and preprocessing

Number of
MIDIs

Avg. size of
MIDI (Kb)

avg. num. of
events in MIDI

Total size of TF
Records (Mb)

261 2.96 859.97 46.8

Table 3.1: This table displays relevant statistics about the content of our dataset.

The first step in gathering the dataset was, of course, gathering the music files from
various sources 1, which were found by Emilia Parada-Cabaleiro. After this, it was
necessary to convert some of the files to MIDI, since they were in the GP5 format.
This turned out to be a substantial issue since Guitar Pro 5 is a patented product
and its official software is not open-source. This means there is no obvious way of

1The sources used were the following: http://www.folkotecagalega.com/pezas/jotas,
http://perso.wanadoo.es/marco.velez/repertor/busca/ritmo.htm, http://www.gaitagallega.es/repertorio-
de-gaita/jotas.html, https://partiturasgaitagalega.wordpress.com/partituras/partituras-en-do/ .

26

http://www.folkotecagalega.com/pezas/jotas
http://perso.wanadoo.es/marco.velez/repertor/busca/ritmo.htm
http://www.gaitagallega.es/repertorio-de-gaita/jotas.html
http://www.gaitagallega.es/repertorio-de-gaita/jotas.html
https://partiturasgaitagalega.wordpress.com/partituras/partituras-en-do/

Chapter 3. Dataset 3.3. COLLECTION PROCESS AND PREPROCESSING

converting Guitar Pro 5 files to MIDI in batch, which is extremely problematic. For-
tunately, there is a publicly available website [48] which performs this conversion,
even though not in batch. Therefore, we developed a script using Selenium [49]
to convert the files in batch without having to access the website manually multiple
times. This worked well and is one of the contributions of this project, since gp5 files
are quite common and converting them to MIDI could prove useful in other similar
projects.

After gathering the MIDIs, it was apparent that most of these contained various
simultaneous tracks, which meant the compositions were polyphonic. As mentioned
previously, RL Tuner cannot deal with polyphony, so the pieces had to be separated
into different MIDI files for each individual track in each composition. Since for most
polyphonic compositions the second (and possibly third) track consisted roughly of
the same melody as the first but transposed upwards or downwards, only the first
track of every MIDI file was kept. The separation was made using the python library
MIDO [50]. In the end, our MIDI dataset was comprised of 261 .mid files, totaling
773.6 kB. After this process, all that is left is creating note sequences (not unlike
the format used by RL Tuner) from the MIDI files and then converting these note
sequences into sequence examples which can be used directly to train and evaluate
the Melody RNN. These two transformations were made using the open-source code
provided by Google Magenta to support their framework.

27

Chapter 4

Melody RNN

In this chapter we will speak about the Melody RNN as a generative model for music
and as a tool to produce checkpoints which will be loaded by the RL Tuner. We
begin by briefly describing this model and its three different variants. We proceed to
explain the training procedure in more detail, explaining the meaning behind all of
the parameters and how they will affect the training process, as well as the values
to which they were during the experimental phase. The next part of this chapter is
divided in two sections: Attention Mechanisms and Overfitting. The first of these
explains how we implemented attention mechanisms for the Basic RNN in order
to produce checkpoints that could be used with the RL Tuner, which is one of our
contributions, and explains why this couldn’t be done with the Attention RNN. The
second discusses the issue of overfitting, detailing why this is especially problematic
for this application and how it can be alleviated by monitoring the training accuracy
and augmenting the dataset. We finish by explicitly stating the RNN configurations
we will be using for the main experiments.

4.1 Brief description of the model

The Melody RNN [51] is a model developed by Google Magenta intended for com-
posing discrete artificial music (MIDI files). It consists of an LSTM network which
can be adapted by providing different parameters, similarly to what was mentioned
in 2.1.1. The training is performed using MIDI files, which are converted to TF
records that the network can take as input. The Melody RNN has three different
variants:

• Basic RNN - a regular LSTM network which uses an encoding (for the musical
pieces) which is very similar to the one used in RL Tuner.

• Lookback RNN - a regular LSTM network which uses a much more complex
lookback encoding (mentioned in 2.1.1).

• Attention RNN - an LSTM network which uses attention mechanisms (specif-
ically, an attention wrapper on the LSTM cell which implements these mecha-
nisms) and also uses the lookback encoding (mentioned in 2.1.1)

28

Chapter 4. Melody RNN 4.2. OVERVIEW OF THE BASIC TRAINING PROCEDURE

Characteristics Basic RNN Lookback RNN Attention RNN
LSTM network
Uses RL Tuner
encoding
Uses lookback
encoding
Uses attention
mechanisms

Table 4.1: This table explains the three different Melody RNN configurations, detailing
their similarities and differences.

4.2 Overview of the basic training procedure

The first of our training attempts was done with the simplest of the three variants:
the Basic RNN. Special care was taken to make our training of this model as similar as
possible to the training process that had generated the pre-trained (with thousands
of hours of arbitrarily gathered music) checkpoint published by Magenta. This was
done by carefully analyzing the checkpoint variables and their dimensions. The
parameters for this model were the following:

• Batch size - This determines the size of the batch which will be fed to the model
in each training step. It was originally set to 128 and was kept at this value
since it matched the pre-trained checkpoint. This yielded satisfying results
and there was no need to lower it since we did not have substantial memory
constraints.

• RNN Layer Sizes - This determines the number of LSTM layers we will use
and the size of each layer. It was originally set to [128, 128], which means that
we would be using two layers with 128 units each. However, this was changed
to [512, 512] in order to match the pre-trained checkpoint. Theoretically, this
means that the network we trained is able to model more features than the
default model.

• Dropout keep probability - This determines the probability of units being
kept during each training step, and it is typically used to reduce overfitting.
The value of this parameter is equal to 1−d where d is the dropout probability.
It was originally set to 0.50, which is already quite low. This is an important
parameter which will lead to further discussion in 4.4, and it was kept at its
original value.

• Gradient clipping norm - During training, the RNN may suffer from a com-
mon problem mentioned earlier, known as Exploding Gradient, which can lead
to NaN (Not a Number - a number too small or large to be represented digi-
tally) gradients and interrupt the learning process. To partially alleviate this
issue, the gradients’ norms are capped (clipped) at a certain value in order to
prevent them from getting too large. This parameter controls this cap and was

29

4.3. ATTENTION MECHANISMS Chapter 4. Melody RNN

originally set to 5. This value led to an apparently smooth training process and
was the same as the pre-trained checkpoint, so it was left unchanged.

• Learning rate - This determines the learning rate used in the Adam optimizer
[22], which is used to update the network weights. It was originally set to
0.001, which is standard, as proposed in [22]. A higher value could have sped
up the initial training phase but this is not necessarily desirable. Since the
pre-trained checkpoint also used this value, the parameter was kept at 0.001.

The number of training steps is also an important part of this process, and these
will be discussed thoroughly in the section 4.4. During training, the model regularly
saves checkpoints at different time-steps and records the models’ accuracy with the
training data (among other measures) at that specific point in training.

4.3 Attention Mechanisms

The initial idea behind this project was to combine two Magenta models: the RL
Tuner and the Attention RNN (a variant of the Melody RNN). This was mainly due
to the fact that these two models appeared to have the most impressive samples
[2, 6] without using any shortcuts or dubious methods. This combination appeared
to involve a simple modification of the RL Tuner to accommodate loading a check-
point given by a regular LSTM (namely the Basic RNN) with additional attention
mechanisms. This assumption was due to the fact that in [6], the Lookback RNN
and the Attention RNN are shown as two vastly different variants of the Melody
RNN: the Lookback RNN relies on a new, more complicated encoding for the input
of the LSTM, which adds features such as a binary value to indicate whether the
previous note was the same as in the last two bars or not; while the Attention RNN
uses attention mechanisms to improve the outputs. This is not entirely untrue, but
the fact is that after analyzing the code, we found that the Attention RNN actually
builds on what is presented with the Lookback RNN: it uses attention mechanism as
well as the lookback encoding, as seen in figure A.1 (see appendix).

This aspect, even if it appears somewhat minor, is crucial since it makes the At-
tention RNN incompatible with the RL Tuner due to their different encodings. This
incompatibility is not easily solvable since the entire RL Tuner architecture relies
on its encoding and using a checkpoint with a different encoding would necessarily
involve restructuring the code in various ways. However, since we were only inter-
ested in the attention mechanisms, we took a different approach to this issue. We
decided to modify the original Basic RNN so as to imbue it with attention mecha-
nisms, so that we would then produce a checkpoint which would be compatible with
the standard encoding while still having the attention mechanisms. This involved
some changes to the Melody RNN code in order to make the Basic RNN’s LSTM cell
have the Attention Wrapper. This worked well, and after some changes to the RL
Tuner code, it was compatible with our new Attention RNN (which we will denote
as New Attention RNN for the remainder of this report). Specifically, the new model
was trained with the same parameters as the Basic RNN apart from the following:

30

Chapter 4. Melody RNN 4.4. OVERFITTING

• RNN Layer sizes - For this parameter, we could not use the value of [512, 512],
due to the fact that it quickly led to a NaN loss. This is probably due to the
fact that the increase in units led to vanishing/exploding gradients, but fur-
ther experimentation with other parameters could not solve this issue, so this
parameter was changed to [128, 128].

• Gradient clipping norm - As mentioned in the previous point, exploding gra-
dients are still a very large issue. Although attention mechanisms provide a
better way to take into account the past input, they still suffer from numeri-
cal instability. Therefore, the clipping norm was changed to a more restrictive
value - 3 - as it is in the original Attention RNN.

• Attention Length - This parameter controls how much of the previous input
we should consider for the attention mechanism. In this case, we chose to
consider the 40 previous events since this was the value of this parameter in
the original Attention RNN and it led to a smooth training procedure.

4.4 Overfitting in Artficial Music Composition

Overfitting is a very well known issue amongst the Machine Learning community.
Essentially, a predictive model overfits when it fails to generalize the dataset and in-
stead fits its noise, creating a model which displays no real intelligence and generally
has no value. However, in discrete creative fields such as music composition with
MIDI, the data does not typically contain noise, as opposed to raw audio. This means
that the overfitting issue is usually expressed in the form of replicating chunks of the
dataset instead of composing original pieces. This problem is not often mentioned
in academic papers (since it yields poor results) but is informally very well know to
researchers in this area using RNNs. For these reasons, properly dealing with over-
fitting was an expected requirement in order to successfully develop this project.

Our first attempts at training the RNNs used the parameters mentioned above and
ran for 20000 training step, as suggested in [51]. This led to some fairly pleasing
results. However, after observing the note probability density graphs produced by
the original RL Tuner code, we noticed severe overfitting. This was especially the
case for the Basic RNN, but it was also apparent for the New Attention RNN, as we
can see in figure 4.1, compared to the pre-trained Basic RNN. The pre-trained RNN
most likely did not overfit due to its very large and broad dataset. Our dataset is lim-
ited, which makes it relatively easy for the network to memorize the pieces instead
of generalizing their style. As it can be seen, attention mechanisms do not help with
this issue, although the Attention RNN ends training with a slightly lower accuracy
since it generally requires more training steps, as we can see in figure B.5 (see ap-
pendix). Increasing the dropout is also not a viable option since it is already quite
high (0.5) and making it higher would disrupt the learning process too harshly. After
observing the accuracy of the model during training, it is quite apparent that there
is an excess of training steps, since after a certain point the accuracy becomes so

31

4.4. OVERFITTING Chapter 4. Melody RNN

close to 1 that the model is clearly overfitting. The conclusion which can be drawn
here is that the overfitting is caused by two major factors: an excess of training steps
and a lack of sufficient data. The first issue can be solved by monitoring the training
accuracy (as seen in Figure 4.2) and will be addressed during Chapter 6 by trying
different amounts of training steps, but the lack of data can be alleviated by a more
remarkable solution.

Data augmentation is a relatively well known tool when using Deep Learning to
deal with limited datasets. It is, for instance, very useful in the context of image
classification [52]. Let’s assume we are trying to recognize a cat in a picture by
using a Convolutional Neural Network to classify it as containing a cat or not. We
feed it a cat picture during training. If the cat is on the right side of the picture, the
network detects that this specific pattern on the left of the picture generally means
that it contains a cat. Let’s say we now feed it the same picture, but mirrored. As a
human, one would be inclined to say that the network is not going to learn anything
new since the content of the picture is still the same, i.e., it does not constitute new
data. However, now the network learns that this mirrored pattern on the left of the
image means that it contains a cat, which is not obvious for the network since it
has no way of recognizing the mirrored picture. This means that by mirroring every
image we have we can duplicate the size of our dataset without directly adding re-
dundancy to the learning process. This concept is know as Data Augmentation and
is especially useful since Deep Learning methods usually require very large datasets.
For music, this process is not obviously applicable, but if we take into account the
relativity of music through transposition, as mentioned in 2.2.2, we realize that the
augmentation of a musical dataset is actually feasible.

The idea behind the augmentation is to simply take every piece and transpose it
to every tone possible in the octave below and above it (shift all of its notes by X
semitones), as it is proposed in other works using Raw audio [53] and MIDI [7].
When we apply this transformation to a piece, its musicality stays the same, and
as in the previous example, one might be tempted to assume that this new data is
redundant. However, if we train the LSTM with a simple piece where the note D is
followed by note E, it learns that, for the input correspondent to D, the ideal output
should give high probability to E as the next note. However, doing the exact same
process with D# and F (the previous melody transpose one semitone up) trains the
network with a different input and a new output, while still dealing with the same
interval (major second) and therefore retaining the piece’s sonority.

This process creates 24 pieces for every single piece in the dataset, ideally multiply-
ing our amount of data by 25. Evidently this created some pieces with notes which
were out of the range allowed according to the conversion between MIDI and se-
quential encoding performed by the Melody RNN, but the Magenta code is equipped
with measures to discard these pieces, so this did not pose a major issue. The trans-
position was attempted using various python libraries but these methods generally
changed the compositions slightly, so we decided to do this simply by converting the

32

Chapter 4. Melody RNN 4.4. OVERFITTING

MIDIs to the sequential encoding and transposing them by adding a certain value
(-12 to 12) to every note of the sequence. This method worked quite well and the
training melodies went from a mere size of 26.9 MB to a much more substantial
473.7 MB.

It is clear by looking at figures B.1 and B.2 (see appendix) that augmenting the
dataset increases the number of relevant training steps before saturating the ac-
curacy and subsequent overfitting, which is in itself a demonstration of how this
method can be beneficial towards any Deep Learning model trained with MIDI files.

Figure 4.1: Due to the Pre-trained RNN’s broad dataset, its note probability density is
very well distributed, while the other networks which are clearly overfitting have very
narrow probability densities.

33

4.4. OVERFITTING Chapter 4. Melody RNN

Figure 4.2: Here we can see how monitoring the training accuracy of a network can
be very important. We can see that the first network is very confident about the notes
due to its high accuracy, which will cause problems with the RL as we will describe later.
The second network, on the other hand, is much more flexible and has various different
possible notes at every time-step.

34

Chapter 4. Melody RNN 4.5. FINAL CONFIGURATIONS

4.5 Final configurations

After the initial experiments and the work detailed in the sections above, we focused
on four different Melody RNN configurations which will be used for the experiments
in chapter 6. The Pre-trained Basic RNN is simply the Basic RNN loaded with the
checkpoint taken from Magenta [51] (trained with thousands of MIDI files). The
Galician Basic RNN is similarly the Basic RNN trained with our Galician dataset.
The Pre-trained+Galician Basic RNN is the Pre-trained Basic RNN trained with the
Galician dataset after loading the pre-trained checkpoint. Finally, the Galician Atten-
tion RNN is the New Attention RNN (as mentioned earlier in this chapter) trained
with the Galician dataset. The three last RNNs were trained by us and were mon-
itored (seen in figures B.3, B.4 and B.5 - see appendix) to produce checkpoints at
different training accuracies:85, 90 and 95 %, to evaluate the effect of overconfi-
dence/overfitting when using the RNNs with the RL Tuner (mentioned below). All
of this information is summarized in the table below:

Characteristics Pre-trained
Basic RNN

Galician Basic
RNN

Pre-trained +
Galician Basic

RNN

Galician
Attention RNN

Uses RL Tuner en-
coding
Based on the Basic
RNN model
Uses attention
mechanisms
Trained with Ma-
genta dataset
Trained with Gali-
cian dataset
Trained for different
training accuracies (85,90,95 %) (85,90,95 %) (85,90,95 %)

Table 4.2: This table explains the four different Melody RNN configurations which will
be referenced for the remainder of this report, explaining their similarities and differ-
ences.

35

Chapter 5

RL Tuner

In this chapter we will describe the RL Tuner training procedure, as well as the
original and new rule-sets which we will use for the experiments. We begin by char-
acterizing the model itself, referring to previous sections such as the background,
and specifying the musical representation used in the RL Tuner. We then proceed
to analyze the original rule-set and present the new rule-set, specifying the rules
which are contained in them, the behaviors they seek to encourage and the reward
functions which implement them. We also mention the combination of these two
rule-sets, and explain why it is also relevant for the experimental phase. We then
provide the configuration details, explaining the parameters, their meaning and the
value to which they were set, as we did in the previous chapter. In the end, we
describe some implementation details about the modifications and extensions which
were crucial in order to make the RL Tuner fit our needs for this project.

5.1 Brief description of the model

The RL Tuner has already been mentioned in sections 2.1.1 and 2.1.4, but it is impor-
tant to define it as a model before we extend its functionality. The RL Tuner consists
of three LSTM networks. One of represents the Deep Q Network; the other repre-
sents the Target Q Network (since we are using Double Q Learning, as mentioned
in 2.1.4); and the third represents the Reward RNN. The first and second networks
play traditional roles explained in 2.1.4, while the Reward RNN provides part of the
reward for the MDP. The other part of the reward is given by a music theory reward,
which can be programmed by the user and can depend on the current action and
the previous composition. The networks are all initialized with a checkpoint given
by a trained RNN (in this project, we will be using the Basic RNN mentioned in the
previous chapter). As the network is trained, the Reward RNN remains fixed while
the Deep Q Network is updated using the traditional Deep Q Learning algorithm
(mentioned in 2.1.4) and the Target Q Network is gradually updated to resemble
the Deep Q Network. In the end, the Deep Q Network is used to compose as a tradi-
tional LSTM network (using priming melodies as mentioned in 2.1.1).

Before moving on to the rule-sets, it is crucial to explore the RL Tuner representation

36

Chapter 5. RL Tuner 5.2. DESCRIPTION OF RULE-SETS

Figure 5.1: The Reinforcement Learning Tuner architecture, where s, a and r represent
state, action and reward respectively. [11]

(or encoding) in detail. The RL Tuner considers pieces as one-dimensional vectors.
Its format is therefore a collapsed version of the piano-roll format mentioned earlier,
in the sense that the pitch is represented as a numerical value instead of a position
in a column, while the position in the vector still represents the time-step in which
the note occurs. In total, 36 possible pitches (spanning 3 octaves) are allowed and
represented by the integers 2-37. The remaining integers 0 and 1 are denoted as
special events. The first of these is the held note event (0), which represents the
holding of a note or pause. The second is the note-off event, which represents ceas-
ing to play note, or beginning a pause. This means that if our unit is the sixteenth
note, a quarter note would be represented as [X,0,0,0], where X ≥ 2, while a quarter
pause would be represented as [1,0,0,0]. It is worth noting that consecutive zeros in
the beginning of the composition represent a pause since no value greater or equal
than two has appeared. Evidently, this format can only represent monophonic music,
which means that the RL Tuner must be trained with and compose pieces with only
one note/event per time-step.

5.2 Description of the different rule-sets

As mentioned previously, part of the reward given for an action in our MDP is given
by the programmer. One can decide to give a reward based on the action (the next
note) and the previous composition. Essentially any pattern can be theoretically
programmed to be rewarded, but this does not guarantee any impact in the post-RL
compositions. This music theory reward is then determined by what we will denote
as a rule-set which determines what kind of behavior should be rewarded/punished.
Below, we will explore the various rules-sets which were experimented with. All of
the statements made below about the effectiveness of each rule is justified by the
results in the project repository [5] and in chapter 6.

37

5.2. DESCRIPTION OF RULE-SETS Chapter 5. RL Tuner

5.2.1 The original rule-set

The intention of the original rule-set [2, 54] is to tune compositions in a non-specific
style, simply correcting the frequent issues of pre-trained RNN compositions such
as extreme repetition or auto-correlation, and adding some markers which are very
common in almost all western music, such as starting the composition with the tonic
note or remaining in the same key throughout the composition. The rule-set is
described as such:

1. Stay in key/Follow the scale - The concept of staying in the same key is gen-
erally followed in traditional musical composition and helps give the piece a
more consistently pleasing sound. In this case, it is realized through three
reward functions: one rewards the composition for being in key, the other
punishes it for being off key and the third rewards notes in the scale. Our com-
positional range here, as mentioned previously, spans 3 octaves and therefore
the keys contain any appropriate notes in that range. The scales which are
rewarded here, on the other hand, encompass only the full scales, from tonic
to tonic, that can be played in this range. Therefore, the key of C Major, for
instance, is composed of the following notes [0, 1, 2, 4, 6, 7, 9, 11, 13, 14, 16,
18, 19, 21, 23, 25, 26, 28, 30, 31, 33, 35, 37], whereas the scales only contain
the following [2, 4, 6, 7, 9, 11, 13, 14, 16, 18, 19, 21, 23, 25, 26], where
[2,14,26] are the tonics. In the rule-set which is actually applied, only the sec-
ond reward function is used. It is worth noting that if no scale is selected, the
model will automatically reward C Major and support for other scales is very
minimal, having required some additions to work adequately.

2. Start and end with the tonic tone - This idea is also very common in most
popular music. However, the way in which it is implemented leaves a lot to be
desired. The composition is rewarded if and only if the tonic note is the action
and there are no previous notes (the first note of the composition will be the
tonic) or if the tonic is played four notes before the end of the composition.
Both of these behaviors are not necessarily desirable. Forcing the composition
to start with the tonic note instead of allowing it to start with a pause and
then compose the tonic note does not make sense and assuming that the bar
length used is four is also not adequate for every meter. However, the first of
these rewards was quite successful with the original model (in the sense that it
heavily impacted post-RL compositions), which is an important achievement.

3. Avoid excessively repeated notes - Repetition of the same note multiple times
in a row can easily remove all musicality from a piece, and should therefore
be avoided in largely any musical composition. This rule is applied in terms
of a reward function which penalizes the composition for writing more than
eight repeated notes in a row with pauses and held notes in between, more
than six repeated notes with pauses or held notes in between, or more than
four repeated notes with no pauses or held notes in between. This tolerance
for repetition with some rhythmic variety is reasonable and the punishment
expressed in reward form is extremely severe, leading to compositions which
generally boast a very low percentage of this type of repetition.

38

Chapter 5. RL Tuner 5.2. DESCRIPTION OF RULE-SETS

4. Prefer harmonious intervals - As mentioned before, the main elements which
define a melody are its rhythm and its intervals, everything else is relative.
Therefore, in order to compose pleasing music, it is very important to encour-
age intervals which generally sound good and punish dissonant ones. In the
code, this is done using a relatively complex function (which had to be manu-
ally changed in order to accommodate keys other than C Major) which detects
the interval between the last note played and the next note (the action) and
whether it is in key (whether both of its notes are contained in the key we
are composing in). Depending on this classification, another reward function
rewards common intervals such as perfect fifths or major thirds in key, and
punishes intervals such as sevenths or eighths since they are too wide and gen-
erally sound strange. In the end, this is a flawed method since it is hard-coded
for the key of C major only and makes plenty of bold assumptions, but it works
decently well. In the implementation of this reward, there are ‘preferred’ in-
tervals, which in C Major are the major third C - E, and the perfect fith C -
G.

5. Resolve large leaps - This is perhaps the most generally applicable of all the
rules. In almost all compositions, the notes during a small chunk of time are
generally contained within a somewhat narrow tonal range. This means that
the composition moves slowly and the notes are generally consistent with each
other, in the sense that the height of their pitches is similar. Therefore, when
a large leap occurs (i.e., a large interval), the composition usually leaps back
to the original tonal range within the next notes. This is done to give the
song some variation and keep the listener engaged while still keeping track
of its original place in the pitch spectrum. This is applied in a large variety
of genres and is a staple of western music. In the code, this is implemented
quite elegantly through a function which detects the leap (an interval larger or
equal to a perfect fifth) and its direction, and then rewards the composition if
it detects a similar leap in the opposite direction within the next six notes. This
is an extremely well realized rule that successfully promotes tonal consistency,
which is one of the most difficult tasks in music composition.

6. Avoid repeating extrema note - This rule serves roughly the same purpose
of the previous rule. The concept of keeping a narrow tonal range is very
important, and a good way of asserting this is to reward the composer for
using the highest and lowest notes of its range only once. This steers the
composition towards the middle of the tonal range instead of its edges, which
in a way enforces the tonal range. This is done by a very simple function
which, after the last note is composed, rewards the piece for having a unique
low note and a unique high note. This method of rewarding is relatively sparse
due to the fact that the reward is given at the end of the composition process
but is clearly dependent on the whole process, and also because the composer
is not rewarded for having the minimum/maximum note appear only twice.
Nevertheless, the reward appears to be quite effective.

7. Avoid high auto-correlation - This method is easily comparable to rule 3 since

39

5.2. DESCRIPTION OF RULE-SETS Chapter 5. RL Tuner

it serves the same principle: avoid noticeable repetition. Although repetition
of patterns is an integral part of modern music, this repetition must be tasteful.
In order words, the pattern which is repeated must have some variation if it is
repeated often, and even then it is generally unwise to repeat it throughout the
whole song if we are composing the lead melody. The idea here is to punish
the composer for composing short patterns which are very similar to the ones it
just composed. In practice, this is done by calculating the correlation between
the current composition and the previous composition with a lag of 1, 2 and
3 using the function shown in figure A.2. If any of these are relatively high, a
negative reward is emitted.

8. Play motifs - Motifs are generally considered to be the core of any complex
melody. In short, the motif represents a short but generally memorable se-
quence of notes, which is then repeated, often with slight variation, through-
out the song. This rule aims not to ensure the repetition of motifs, but to
incentivize the composition of musical chunks which have the general format
of a motif: a sequence of eight notes/events with three or more unique pitches.
This is conceptually a good idea, but this formulation is evidently flawed since
it does not reward the composition of motifs which may span more than eight
notes in the composition due to the length of the notes or the existence of
pauses. In any case, this reward function works to some effect and therefore
we consider it to be appropriate even for meters different than the default 4/4.

9. Play repeated motifs - As mentioned in the description of the previous rule,
the repetition of a given motif is frequently more important than its content.
This is enforced through a reward function which simply checks whether there
was a motif in the previous eight notes (including the action) and if so, check
if it was present in its exact form throughout the whole previous composition.
If so, the agent is rewarded with a substantial value. This implementation has
severe limitations, namely the ones mentioned in the previous rule, in addition
to the fact that it only detects the repetition of the exact same notes rather
than also rewarding approximate repetition of the motif. Even still, it is quite
ambitious and it attempts to solve one of the major issues in artificial music
composition, as highlighted in 2.1.2, and therefore deserves some attention.
In any case, it does not end up working very convincingly, since even in the
demo published by Magenta [55], the percentage of notes in a repeated motif
for the post-RL compositions was 0.0%. In our experience [5], this rule also
did not manage to influence the outputs consistently.

In the end, the conclusions drawn from this analysis can be summarized briefly.
This rule-set is useful since it partially eliminates common issues with RNN-based
musical compositions such as excessive repetition, strangle leaps in pitch and, of
course, notes not consistent with the apparent key of the piece. However, it suffers
from some severe limitations such as being coded essentially only for the key of C
Major and oversimplifying some of the reward functions, such as the ones related to
motifs. The most important issue, however, is that this rule-set does not explore more

40

Chapter 5. RL Tuner 5.2. DESCRIPTION OF RULE-SETS

Figure 5.2: This scheme illustrates the format which we will be using for the RL Tuner
compositions, based on the typical format of the pieces contained in the Galician dataset.

specialized rules which could steer the composition towards a more well defined style,
which is what we aim to do in this project.

5.2.2 The Galician rule-set

This rule-set aims not only to tune the RNN, but to substantially influence its com-
positional style in order to (ideally) make even an RNN which was not trained with
the Galician data-set compose in this style. In this way, what we mean to evaluate
is the power of the RL Tuner and if it can be used for more than slight adjustments
to the behavior of an RNN. The rule-set was elaborated by a musicologist (Emilia
Parada-Cabaleiro) and a music psychologist (Eduardo Coutinho) who analyzed the
dataset and its musical tendencies. In the end, it was decided that the compositional
unit (the length of each element in the composition vector) should be the sixteenth
note, since the RL Tuner automatically encoded the MIDIs from the dataset using
this standard. A meter of 6/8 (12 sixteenth notes per measure) was adopted and
the composition was divided into two sections, A and B, featuring different rule-sets.
Each section contains 8 measures and each piece contains 6 sections, forming the
sequence AABBAA. In terms of the sequential encoding, each section is made up of
96 notes/events, whereas the full piece contains 6 sections totaling 576 events.

After some preliminary experiments, it was decided that composing the full piece
was overambitious for the RL Tuner, since it made the state-space and the variety of
rewards so large that the learning process was very convoluted and time consuming.
Therefore, the composition (and training) was performed section by section, using
one of the two separate rule-sets each time. It is important to mention that the ap-

41

5.2. DESCRIPTION OF RULE-SETS Chapter 5. RL Tuner

propriate keys for this genre are D Major, C Major, F Major, C minor and D minor,
and the one we are following is defined as a parameter of the training procedure. It
is also worth noting that, in the minor scales, one extra note is allowed (one semi-
tone below the tonic) due to a rule which will be explained later. The general rules
are the following:

1. Sections should end with a quarter note - Conceptually, this rule is quite
simple: the composer should be rewarded for ending the composition with a
quarter note. In practice, the reward is given when, in the last possible time-
step of the section, the action (next note) is a held note event, the previous
two notes are also held notes events and the note before these is either a note
off event or a note.

2. Sections should end with the tonic - This rule’s implementation has an in-
teresting subtlety. The composition should be rewarded if the last note to be
played is the tonic. A näıve approach to this reward function would be to re-
ward the agent if and only if it selects the tonic note (for example, 14) at the
last time-step. However, this is not a complete implementation of our require-
ment. The composition could be [...,14,1,0,0,1,0], where the last note would
indeed be the tonic but no reward would be attributed. Therefore, the reward
function must take these cases into account by, at the last time-step, check-
ing whether the action corresponds to the tonic note or if the action is a held
note/pause and the latest note in the previous composition was the tonic. This
kind of thought process is extremely important in order to implement these
rules properly. The issue here is that by providing the reward in the end for
a tonic which was played five notes before the end of the composition, we
distance the time-step in which the reward is attributed from the time-step in
which the tonic was played, which can complicate the learning process. How-
ever, in this case, as well as in many others, this is effectively the only way of
programming the reward accurately.

3. The sub-tonic should be followed by the tonic - In other words, the note
which is one semitone below the tonic note (the sub-tonic) should be followed
by the tonic itself. This is relatively simple to implement: if the most recent
note was the sub-tonic, selecting the action corresponding to the tonic should
entail a positive reward. In this case, the issue is that we risk biasing the
composer towards constantly composing sub-tonics simply to then compose
the tonic and get the reward, which is undesirable. Because of this, the value
of the reward should be fine tuned to make it clear that it is effective without
saturating the piece.

4. After a leap, play the immediate opposite note - This rule was noted af-
ter observing the following behavior in the dataset: after a substantial leap in
pitch in a certain direction (a fourth or larger), the next note is usually the note
directly below or above the current note, opposing the direction of the leap.
Specifically, this was then implemented as a reward function by detecting leaps
of more than 3 notes in the scale (a fourth or larger interval, checking if both

42

Chapter 5. RL Tuner 5.2. DESCRIPTION OF RULE-SETS

notes are in the scale) and then rewarding the agent for choosing the appro-
priate action (one which is one semitone or less in the opposite direction and
is in the scale). The problem of saturating the composition with this behavior
is a concern, just as it was for the previous rule.

5. Reverse direction after multiple notes in the same direction - By listening to
some of the pieces in the dataset, one of the aspects that becomes apparent is
that they typically feature many ascending and descending melodies which are
relatively short and generally stabilize by returning to the original tonal range.
We found that the best way to implement this was to reward the agent for
choosing a note in the opposite direction after having composed a sequence of
notes all following the same direction (three or more notes, where the reward
is proportional to the length of the sequence). This stops the network from
creating sequences that are too long without varying the pitch contour (the
pitch variation throughout the song), while also implicitly incentivizing the
agent to compose these sequences which, as mentioned previously, should be
prevalent in this genre. The issue of saturating the composition must also be
kept in mind, but it is generally less worrying than in previous cases since this
reward is less oppressive.

The section-specific rules are described as follows:
Section A:

1. Note lengths - Section A should contain faster notes, which means that it
should feature sixteenth notes and eighth notes in approximately equal parts,
and only one or two quarter notes. It should not contain any longer notes.
The rewards for note lengths are attributed in the following way: if, during
the time-step after our note, the previous composition consists of the note we
want to reward ([16,0], for instance, if we want to reward eighth notes), then
the agent should be rewarded for choosing any action other than the held note
event, ensuring that the composition will indeed contain an eighth note and
not a longer note. This method is slightly counterintuitive but it is the most
direct way of rewarding this behavior.

2. Intervals - Thirds should be the most common interval in section A. This is
ensured by using a reward function that allocates a positive reward when the
agent composes a note which forms a third when paired with the previous
note, and both of the notes are in the scale which is being followed. The risk
of degenerating into an agent which only composes using this interval is quite
high, and therefore the value for this reward must be taken into consideration.

3. Start with a quarter rest - This rule is implemented by attributing a positive
reward when the composition is made of 4 held note events after the first 4
time-steps. This signifies a quarter rest, given that no other note has been
played. The implementation is similar to rule A1.

Section B:

43

5.2. DESCRIPTION OF RULE-SETS Chapter 5. RL Tuner

1. Note lengths - Section B should contain slower notes, which include quar-
ter notes and eighth notes. Sixteenth notes should be avoided, and therefore
warrant a negative reward. The implementation is similar to rule A1.

2. Intervals - Large intervals should be prevalent. Therefore, a positive reward
is emitted whenever an interval larger or equal to a fourth is composed. The
implementation is similar to rule A2.

3. End with a quarter note and two quarter rests - The idea here is that the last
bar of section B should consist of a quarter note in the beginning and then be
silent. The last silence can be seen as a half note rest, two quarter note rests,
four eighth note rests, etc. Specifically, the first quarter note is rewarded in the
form we have already described, and the silence is rewarded in two ways: if
the agent composes a quarter rest in the correct time-step, it receives a very
heavy reward; and if it selects the note off event as an action throughout the
last two thirds of the bar, it receives a relatively small positive reward. This
final silence can be rewarded in many different ways, but it is challenging to
achieve the desired behavior, as we will mention later on.

A note about the rules which were discarded from the final rule-set:

Two of the rules which we initially formulated were not kept for the rule-set used in
the full experiments:

1. Intra-section repetition - This is probably the most conceptually interesting
rule that has been presented so far, but it is plagued by some very large issues.
Essentially, the intended behavior is that each section’s pitch contour should
be symmetrical, in the sense that the first four bars should have a similar con-
tour to the last four. This does not necessarily mean that their rhythm must be
similar, but only that the relative “ups and downs” of the first half should be
recognizably similar to the second half. The first issue is that this behavior is
empirically quite difficult to implement in a form which can be easily learned.
We could, of course, at the end of each section, calculate the similarity of the
contours and reward the network accordingly. However, this alienates the re-
ward from the actions that led to it, which is very detrimental since it makes
it very difficult for the Deep Q Learning architecture to learn how to maximize
this reward. We can, instead, opt to check the intervals of the second part
compared to the first, action by action, and apply the reward step by step in
order to make the reward process and therefore the learning smoother. How-
ever, the larger issue here is that this rule naturally incentivizes repetition and
correlation between the current notes and the previous composition. This is a
very dangerous behavior since it can lead to the unnatural repetition which we
tried to deemphasize by using rules 3 and 7 from the original rule-set. Mainly
due to this reason, this rule/reward was not included in the final rule-set.

2. Note repetition is allowed with quarter notes, especially in section B - The
way to implement this would be to decrease the penalty for repetition if it is

44

Chapter 5. RL Tuner 5.2. DESCRIPTION OF RULE-SETS

done using quarter notes, and decrease it further if it is also in section B. As
with the previous rule, this would allow the network to be more repetitive,
which is clearly not wise. Even though this behavior was observed in the orig-
inal dataset, we decided it was best not to associate it with a reward due to its
potential for disturbing the final compositions.

Rule name Original Rule-set Galician rule-set Combination of
rule-sets

1 Stay in key
2 Start/end with tonic
3 Avoid repetition

4
Prefer harmonious
intervals

5 Resolve large leaps

6
Avoid repeating ex-
trema

7
Avoid high auto-
correlation

8 Play motifs
9 Play repeated motifs

10
End with a quarter
note

11 End with the tonic

12
Follow sub-tonics
with tonic

13
After a leap, play the
opposite note

14 Reverse direction
A1 Compose fast notes (A) (A)
A2 Compose thirds (A) (A)

A3
Start with quarter
rest (A) (A)

B1 Compose slow notes (B) (B)

B2
Compose broad in-
tervals (B) (B)

B3
End with quarter
note/two quarter
rests

(B) (B)

Table 5.1: This table explains the three different rule-sets explored in this chapter,
showing which rules are contained in which rule-set. Checkmark (A) and checkmark
(B) represent the rules that are specific for each section (A or B).

45

5.3. TRAINING PROCEDURE Chapter 5. RL Tuner

5.2.3 Combining the two rule-sets

In order to attempt better results, we decided to combine the original and the new
dataset into a mix of the two. This combined rule-set contains every rule in the
new rule-set and most of the rules from the original set. The exceptions were rule 2
(start and end with the tonic note), since we were not satisfied with the restrictive
implementation of this rule and the idea behind it did not match our new genre; and
rule 6, since unique high/low notes were not associated with this genre. In addition,
some modifications were made to the original rule-set in order to properly suit new
keys other than C Major. In order to test the adequacy of these changes, we ran two
experiments in which only the notes in the key of C# Major was rewarded (which
only has two notes in common with C major) using this rule-set. These featured be-
tween 1 and 3 % notes off key [5], which generally means that the code now works
well for any major key.

In short, the purpose of this rule-set is the same as the Galician one: steer the com-
position towards the Xota Gallega style. However, it also includes some general rules
which can help improve outputs, namely the ones which aim to alleviate the issue of
repetition. Theoretically, this rule-set should yield the best results.

5.3 Further details regarding training procedure and
tuning

Training the RL Tuner itself also involved tuning a fair amount of hyperparameters.
Here are the ones that were most relevant:

• Note RNN type - As we have stated, the only type of RNN we will be using
in this project is the Basic RNN from Google Magenta, with some additional
modifications for the New Attention RNN.

• Number of training steps - This value was originally set to 1000000 steps for
the RL Tuner. After much experimentation with lower values in order to speed
up the training process, we decided that using a significantly lower amount of
steps made the training far too inconsistent, and therefore was not worth it.
To be clear, we left this paramter at its original value for the remainder of the
project.

• Algorithm - This parameter refers to the three different possible RL algorithms
which this architecture supports: Q-learning, Psi-learning and G-learning. As
mentioned in 2.1.1, this will be set to Q-learning throughout the whole project
since this is by far the most tried and tested of the three approaches.

• Exploration mode - The RL Tuner architecture is compatible with Boltzmann
exploration (which samples from the model’s output to select the next action)
and ε-greedy exploration (mentioned in section 2.1.4). Since the latter had
seen far more use in the context of RL and yielded good results, we decided to
adopt it.

46

Chapter 5. RL Tuner 5.3. TRAINING PROCEDURE

• Random action probability - In our case, since we are using ε-greedy explo-
ration, this value is commonly known as ε. Its default value was 0.1 and, due
to the annealing mentioned below to encourage initial exploration, this some-
what low value seemed reasonable and was kept.

• Exploration steps - This value represents the number of training steps (start-
ing from the beginning of training) which will be taken until the exploration
rate (ε) reaches its final value (0.1). In order to encourage exploration during
the initial training steps, ε is set to 1 on the first training step. This means that,
at this point, the exploration is absolutely random. As the training advances,
this value is annealed towards the value we set for ε as a hyperparameter. By
setting the number of exploration steps to half of the training steps (500000),
we are configuring the network to perform this annealing for the first half of
this training and then proceed through the second half with the same value for
ε until the end. The default value for this hyperparameter was indeed 500000
and was not changed.

• Reward mode - This parameter controls the rule-set that will be used for the
training and can be set to five distinct configurations (three of which did not
exist in the original project):

– no rl - there is no rule-set for training, since we are only going to generate
without training.

– zero reward - The reward for music theory is set to zero at all times.

– music theory only - Uses the original rule-set (5.2.1).

– galician only - Uses the Galician rule-set (5.2.2).

– both rule sets - Uses the mixture of the original and the Galician rule-sets
(5.2.3).

• Reward scaler - This determines the weight which is placed on the music
theory reward, i.e.

Total reward = Reward scaler ∗Music theory reward + RNN reward (5.1)

This was set to 1.0 originally, but due to the high emphasis of the music theory
reward in our research, we decided to set it to 2.0 instead.

• Attention - Should be set to “True” if we are loading a checkpoint from the
New Attention RNN. This was not in the original project.

• Mini-batch size - This refers to the amount of samples from the experience
buffer used at each training step (this term was introduced in 2.1.1). The
default value for this was 32 and since this led to good results and we did not
have any memory issues during training, it was kept this way.

• Discount rate - This parameter was mentioned in 2.1.4 and it controls how
much the agent values future rewards. It is set to 0.5 and was kept at this
value.

47

5.3. TRAINING PROCEDURE Chapter 5. RL Tuner

• Target network update rate - As mentioned in 2.1.4, the Target Q Network
should be updated frequently to be similar to the Q Network. This is done by
applying this update function to all of the variables in the Q Network/Target Q
Network:

target = (1− α) ∗ target+ α ∗ source (5.2)

where target is the variable from the Target Q Network, source is the variable
from the Q Network and α is the update rate. The value for this parameter was
kept at 0.01, as in the original code.

• Key - The key in which the agent should be trained to compose. This is set to C
Major as default, and it was kept this way for almost the whole project, apart
from some specific experiments.

• Number of notes in melody - As mentioned in 5.2.2, we compose section by
section so the number of notes is 96, as opposed to the original 32.

Apart from the training configuration, there is one aspect in this procedure which is
worth exploring in depth. One of the biggest challenges in this project was the incon-
sistency of Deep Q Learning applied to music composition. Deep Learning methods
often have trouble with inconsistency due to the generalized use of stochastic pro-
cesses in order to update the network weights efficiently, as highlighted in 2.1.1.
This unreliability is exacerbated by the exploration algorithms typically used in RL,
namely ε-learning, which makes the final policy extremely dependent on the ini-
tial random exploration. For these reasons, and due to the fact that we are using a
trained RNN for part of the reward, which is already known to be quite unpredictable
in its compositions, the outputs post-RL training can have a high intra-procedural
(compositions coming from the same trained network) as well as inter-procedural
(compositions from different networks trained with the same parameters) variance.

The intra-procedural variance is to be expected in this domain (since any musical
dataset can feature a high variance), and this can be counteracted by composing
a large amount of compositions in order to get representative statistics. The inter-
procedural variance, however, is heavily accentuated, especially with heavy music
theory rewards, and cannot be completely fixed by increasing the number of train-
ing steps. Table 5.2 portrays this issue with concrete training results, by comparing
the composition statistics between two models trained with the exact same param-
eters. The only way of mitigating this problem to a certain extent is to perform
various training procedures with the same exact configuration. However, this is not
an ideal solution since it evidently increases the amount of time needed to get the
final results. In any case, this methodology will be applied to one configuration in
chapter 6.

48

Chapter 5. RL Tuner 5.4. PREPARING THE RL TUNER

1st run 2nd run
avg. num. sevenths per composition 0.026 0.151
avg. num. fifths per composition 3.077 1.078
avg. num. rest intervals per composition 12.37 0.147
avg. num. of eighth notes in composition 18.01 8.893
avg. num. of late quarter notes in composition 0.191 0.374
avg. num. of late pauses in composition 0.23 0.005
avg. num. of last quarter notes in composition 0.171 0.371
avg. num. of sub tonics in composition 0.017 0.007
avg. num. of opposite seconds in composition 0.446 1.036
avg. num. of direction changes in composition 0.973 3.328

Table 5.2: This table mentions some of the compositional statistics of two trained RL
Tuner models, trained with the exact same parameters, RNN checkpoints (pre-trained
Basic RNN) and rule-sets (original+Galician). Although they were trained for 1000000
steps, we can still see that there are some substantial differences in statistics which
should be tuned by specific rules. This is a clear example of how unreliable the results
from a single training run can be with this architecture. The statistics were calculated
by generating 1000 compositions totaling 96000 notes. It is worth noting that not all
training runs feature this large amount of variance, since this is an extreme case.

5.4 Preparing and modifying the original RL Tuner
(Implementation details)

The code for the original RL Tuner was made in 2016, receiving some additional
updates throughout the years. However, after we acquired the open-source code
and ran it with the most recent version of Tensorflow (which at the time was ver-
sion 1.8.0), it was apparent that the model was not functional. This was due to two
main concerns. The first of these was the fact that the names of the variables in the
pre-trained checkpoints differed slightly from their names in the actual Tensorflow
graph (this was the case for both the note RNN and the Basic RNN). It is likely that
the pre-trained checkpoints were simply outdated when compared to the variable
names automatically created by Tensorflow when the RNN cell is created. The so-
lution to this issue involved analyzing the checkpoints and writing scripts to change
the variable names to the appropriate strings, adapting code originally obtained from
[55]. The second issue was substantially more complex. The LSTM state is a integral
part of the RL Tuner architecture since it is used as the state of the MDP. The issue
lies in the fact that the format of the state in Tensorflow has changed since 2016.
Specifically, it used to be a simple vector of vectors, containing all the information
regarding the current state, while nowadays it has been updated to be a vector of
LSTM State Tuples, which are Tensorflow objects made specifically for this purpose.
This change meant that the original code was made obsolete and did not compile.
Therefore, some technical work had to be done to adapt the code to this new state
format. This involved a fair amount of modifications to some core elements of the
original work, which can be found in [5].

49

5.4. PREPARING THE RL TUNER Chapter 5. RL Tuner

After these changes, the project was compiling properly. However, some of the statis-
tics gotten after performing the training with the same parameters as in the Magenta
notebook demo [55] were slightly different, evidently due to the fact that the demo
had used the Note RNN, whereas we were experimenting with the Basic RNN. This
meant that we had to change some rewards slightly, namely since the compositions
were lacking pauses, but the rewards and their values stayed largely the same and
produced results comparable to those presented in [2]. After the results of the paper
were approximately replicated, the code had to be modified to accommodate Atten-
tion Mechanisms. This involved changing the way the LSTM state was parsed and
fed to the Q Network, since the state gains a new dimension in the New Attention
RNN. This is due to the fact that an Attention wrapper is added to the LSTM cell.
This process also included some checkpoint manipulation, but this was mentioned
in the previous section. Apart from this, some minor quality of life changes were
applied to the original code and the file which is used to train the RL Tuner was
heavily modified, gaining new flags and functionalities in order to suit the interests
of this project. An example of one of the new features is recording statistics pre
and post training in order to directly evaluate the impact of the RL training in the
compositions. A flag was also added to inform the network whether we are dealing
with attention mechanisms or not, as this will require a slightly different procedure.

50

Chapter 6

Experiments and analysis of results

In this chapter we outline the experiments performed in this project and analyze
their results. We begin by summarizing which experiments were performed, defin-
ing the RNN/rule-set configurations that were tested. We then analyze the results
generated by the RNNs before any RL training, observing the statistics that were
measured by the model (which can be seen in detail in the project repository [5])
as well as the behavior in the MIDI samples (found in [5]) to determine the quality
of the compositions, and use them as a baseline for the next experiments. After this,
we analyze our main configuration, the Pre-trained Basic RNN trained with Both
Rule-sets (original and Galician). In this section, we delve into detail regarding the
post-RL compositional statistics and how they compare with the pre-RL statistics, in
order to measure the effectiveness of every reward in this rule-set. In the next two
sections, we discuss the behavior of other RNNs trained with both rule-sets, as well
as every RNN with the remaining reward modes (zero reward, original and Gali-
cian). We finish by using a new graphical representation to compare the pre-RL and
post-RL statistics of every tested configuration and commenting on how this repre-
sentation illustrates some of the statements that were made during the analysis of
the experiments.

6.1 Outline of the experimental procedure

For the final training procedures, we decided to test every RNN configuration men-
tioned in 4.5 (Pre-trained Basic RNN, Galician Basic RNN, Pre-trained+Galician Ba-
sic RNN,Galician Attention RNN) with all 5 reward modes mentioned in 5.3., in
order to present as many relevant results as possible. The pre-trained Basic RNN
tuned with both rule-sets was run five times, since it is the main object of our anal-
ysis, whereas every other variant was trained only once and will be analyzed more
briefly. The reason why this is our main configuration is the fact that the new rule-set
was tuned towards this combination of RNN and reward mode. Specifically, the pre-
trained RNN was preferred due to its malleability (reacting well to RL tuning since
it is not overconfident about the next note) given the broad dataset with which it
was trained, and the original+Galician rule-set was used due to the fact that it ap-
peared to be the most well-rounded rule-set available (it prevents common problems

51

6.2. MELODY RNN, NO RL Chapter 6. Experiments and analysis of results

in RNN composers while still steering the composition towards a particular style).
The key used for the rule-set was C Major and the augmented version of the dataset
was used for all relevant configurations. The results of the experiments, including
the statistics and the generated samples, can be found in the project repository
[5].Below we describe every configuration that was tested:

No RL Zero
Reward

Original
Rule-set

Galician
Rule-set

Both
Rule-sets

Pre-trained Basic RNN 1.1 1.2 1.3 1.4 1.5
Pre-trained+Galician
Basic RNN 2.1 2.2 2.3 2.4 2.5

Galician Basic RNN 3.1 3.2 3.3 3.4 3.5
Galician Attention
RNN 4.1 4.2 4.3 4.4 4.5

Table 6.1: This table denominates all the experiments performed in this chapter for
future reference

6.2 Melody RNN, No RL Training

In this section we discuss the outputs generated by the RNNs before the Reinforce-
ment Learning, in order to display a clear picture of their compositional style, which
can then be compared to the other configurations.

6.2.1 Pre-trained Basic RNN (1.1)

We begin with the Pre-trained RNN. This network has two main issues. The first of
these is excessive repetition, which is a common issue for RNNs but is even more
prevalent than usual for this network, featuring 22.46 % excessively repeated notes.
This can easily be noticed by listening to the samples [5], which often repeat the
same note for the whole piece. The second issue is the lack of adherence to a key.
Many compositions have no clear key guide, which makes it abundantly clear that
they were not composed by a trained musician. This is mostly due to the fact that
the dataset used for training is extremely broad, but it is still unacceptable. Apart
from these problems, the compositions feature decent compositional statistics but
sometimes have notes which are clearly too long or very long periods of silence
which sound unnatural.

6.2.2 Galician Basic RNN (2.1)

The next RNNs were trained internally, using checkpoints resulting from our training
process and not taken from Magenta [55]. Due to the overfitting issue detailed in
section 4.4, the accuracy of the models was monitored and three checkpoints were
produced for each of them, featuring 85 %, 90 % and 95 %. The idea here was to

52

Chapter 6. Experiments and analysis of results 6.2. MELODY RNN, NO RL

Figure 6.1: This image is taken from the piano-roll representation of a sample generated
by the Pre-trained Basic RNN (1.1). This situation highlights the issue of excessive
repetition.

experiment with lower accuracies to prevent overfitting and make the reward RNN
have a more diverse rewarding function. In the end, it is noticeable in the note
probability density charts (Figure 4.2) that the network is less overconfident about
the next note, which is exactly what is required in this case. The first RNN trained
with the Galician dataset was the Basic RNN (with no previous training). The com-
positions still suffer from excessive repetition, but to a much lesser extent (between
2 and 5 %). The repetition happens relatively rarely but once it does the network
clearly gets into a loop where it chooses the same note as the next note multiple
times, and it noticeably harms the quality of the piece. In every other regard, the
compositions are acceptable. They generally stay in the same key and tonal range,
and they feature the ascending/descending pitch contour which appears frequently
in the Galician dataset. The differences between the three different checkpoints in
terms of compositional style are minor and the previous comments apply to all of
the accuracies mentioned above.

6.2.3 Pre-trained+Galician Basic RNN (3.1)

After this, we also attempted using the pre-trained RNN and training it with the
Galician dataset on top of the original training. This worked relatively well, but
the repetition tendency of the pre-trained network persists, reaching almost 10 %
excessively repeated notes. Although this model achieves high training accuracy in
few training steps, its compositions do not appear to embody the Galician dataset
due to an accentuated frequency of very long notes, among other issues. The RNN
with 95 % accuracy seemed to produce the best outputs, although they still suffer
from the same issues.

53

6.3. PRE-TRAINED/BOTH SETS Chapter 6. Experiments and analysis of results

Figure 6.2: This image is taken from the piano-roll representation of a sample generated
by the Pre-trained+Galician Basic RNN (3.1). In this case, we can clearly see that the
network has composed two notes which are too long (longer than a whole note).

6.2.4 Galician Attention RNN (4.1)

The final RNN configuration was the New Attention RNN, trained only with the
Galician dataset. This network takes far longer (in terms of training steps) to reach
an acceptable accuracy, but it does not yield noticeably better results than the Basic
RNN trained with the same dataset. The compositions are slightly more inconsistent
than the ones produced by the Basic RNN, containing overly long notes and pauses
at times. However, it must be said that the best pieces produced here are more
impressive than what is seen in any of the pre-RL previous configurations, although
not by a large margin. In the end, the addition of attention mechanisms is not an
evident upgrade over the original network, but it does lead to compelling results in
some cases.

6.3 Pre-trained Basic RNN with Both Rule-sets (1.5)

In this section we compare the compositional statistics pre and post-RL training for
the pre-trained Basic RNN with the original+Galician rule-set, which is our main
configuration as mentioned in 6.1. We separate this analysis in sections since there
is a separate rule-set/reward mode for each of them.

A note about the following sections:

The results which will be mentioned below refer to three statistics:

• Pre-RL - This refers to the statistic measured in 1000 compositions generated
by the RNN before any RL training. The mean and standard deviation are
presented to summarize the five values obtained after the five separate training
procedures.

54

Chapter 6. Experiments and analysis of results 6.3. PRE-TRAINED/BOTH SETS

• Post-RL - This refers to the statistic measured in 1000 compositions generated
by the RNN after the RL training (with both rule-sets). The mean and standard
deviation have the same meaning as the Pre-RL statistic.

• Best value - This refers to the best value out of the five Post-RL values. If we
are in section B, for instance, and we are measuring the average amount of
sixteenth notes per composition, the best value would be the lowest of the five
values.

It is worth noting that the rule numbers used in this section are different from
the ones used in chapter 5, since we are specifically speaking about the Orig-
inal+Galician rule-set and the rules are organized by order of importance for
the analysis.

6.3.1 Section A

I Stay in key - This rule worked very well, which was expected since it was already
a success in the original paper, but given that we are using a different RNN
and adding the new rule-set this is quite a satisfying result. This reward is
effective since notes in and out of key happen often in the exploration, leading to
a smooth training procedure. Also, the reward is applied directly to the action,
which leaves no distance between the action that caused the reward and the
application of the reward, which is desirable in any Reinforcement Learning
environment.

Pre-RL Post-RL Best value
2.71 ± 0.17% 0.85 ± 0.29% 0.32%

Table 6.2: Percentage of notes not in key (not contained in the set which represents the
key of C Major)

II Avoid excessively repeated notes - This rule also worked remarkably well, as
expected. This is perhaps the most crucial of the original rules and it is extremely
important that excessive repetition is almost non-existent post-RL.

Pre-RL Post-RL mean Post-RL
19.71 ± 0.68 % 0.001 ± 0.002 % 0.0%

Table 6.3: Percentage of notes repeated excessively

III Note lengths - Getting the correct note lengths was one of the main challenges of
this training process, since this is a fundamental part of any musical composition
and it was not attempted in any way in the original paper [2]. In this section
the note lengths should be focused on the eighth notes, while having also a high
amount of sixteenth notes. There should also be a somewhat reduced amount
of quarter notes. We can see by the post-RL statistics that this objective was

55

6.3. PRE-TRAINED/BOTH SETS Chapter 6. Experiments and analysis of results

achieved with no issues, removing all of the notes longer than a quarter in length
since these are not prevalent in the galician dataset. One could argue that the
distribution of note lengths is similar between the original RNN compositions
and the final compositions, but the increase in eighth notes and the elimination
of any longer notes clearly show that the rewards of the RL Tuner have complete
control over this aspect of the compositions, even if it requires a fair amount of
manual tuning. This is a remarkable achievement for the project. The control is
further shown through the fact that the frequency of sixteenth notes is roughly
the same pre and post-RL, rather than increasing exponentially as was the case
for the original rule-set (featuring almost 50 sixteenth notes per composition on
average).

Note length Pre-RL Post-RL Best value
1/16 17.63 ± 0.66 15.26 ± 3.01 16.95
1/8 9.78 ± 0.40 34.23 ± 3.60 39.45
1/4 2.76 ± 0.14 2.13 ± 1.39 2.79
1/2 0.79 ± 0.07 0.0 ± 0.0 0.0
1 0.29 ± 0.03 0.0 ± 0.0 0.0
>1 0.23 ± 0.03 0.0 ± 0.0 0.0

Table 6.4: Statistics regarding number of notes with specific note lengths per composi-
tion

IV Intervals - 1 In this section, the objective was to have an increased amount
of thirds and keep the other intervals at a reasonable level in order to avoid
saturating the compositions. We can see that the number of thirds increased by
more than four times after the RL training. This clearly indicates how successful
this rule was. However, if we look at the percentage of thirds, we can see that,
on average, thirds constitute less than half of the total intervals. This shows that
the intervals in most compositions are still varied, which is most likely due to
the addition of the original rule-set.

V Resolve large leaps - For this rule, we can see that most leaps are already re-
solved in the original RNN (around 75%). This percentage does not rise sub-
stantially after applying the reward, which is acceptable due to its already high
value. However, the number of leaps definitely increases, which is a side-effect
of the reward and not its initial intention. This interaction shows how some rules
can influence statistics in a way which is not necessarily expected, but can still be
desirable. In any case, the increased amount of leaps may also be related to the
rule added in the galician dataset which also incentivizes this kind of behavior.

VI Avoid high auto-correlation - For this statistic, we take the absolute value of
the correlation (which can be positive or negative) in order to obtain relevant

1To produce the results shown in the table regarding intervals, we performed a new training run
with new statistics (separate from the run which produced the rest of the results displayed in this
chapter), but kept the rest of the code unaltered (including the parameters and reward functions).
This was due to the fact that the statistics regarding intervals in the original project were incomplete.

56

Chapter 6. Experiments and analysis of results 6.3. PRE-TRAINED/BOTH SETS

Interval Pre-RL Post-RL Best value
non-preferred major
thirds 1.33 ± 0.03 2.03 ± 0.95 3.77

preferred major
thirds 0.75 ± 0.03 9.61 ± 1.53 12.29

minor thirds 3.08 ± 0.09 10.26 ± 1.25 12.39
total thirds 5.16 ± 0.13 21.89 ± 1.14 22.81
percentage of thirds 20.21 ± 0.31 % 48.86 ± 2.66 % 53.00 %

Table 6.5: Statistics regarding number of intervals per composition

Name of statistic Pre-RL Post-RL Best value
Percentage of leaps
resolved 75.18 ± 0.96 % 75.76 ± 3.80 % 80.39 %

Number of leaps re-
solved 0.73 ± 0.02 2.45 ± 0.33 2.94

Table 6.6: Statistics regarding leaps larger than a fifth in compositions

values for the mean and standard deviation. By looking at the data below, it
is apparent that the correlation did not reliably decrease with training, having
even increased in two of the three measures. This is not desirable, but the fact
that these values did not spike is what is important. The correlation can be
high, for instance, due to the existence of a lot of held notes (the correlations
when the composition is [0,0,0,0,0,0,0,0] are all very high since the previous
compositions with lags 1, 2 and 3 are equivalent to the current composition).
Due to this reason and also the high variance featured below, it is important to
have a critical mindset when analyzing this statistic and listen to the composed
samples in order to understand if this correlation is detrimental (which is not
the case).

Name of statistic Pre-RL Post-RL Post-RL
Correlation with lag 1 0.18 ± 0.01 0.33 ± 0.10 0.17
Correlation with lag 2 0.17 ± 0.02 0.23 ± 0.13 0.003
Correlation with lag 3 0.16 ± 0.01 0.12 ± 0.10 0.01

Table 6.7: Statistics regarding correlation in compositions

VII Play (repeated) motifs - As mentioned in the Background, motifs are funda-
mental for proper music composition. It is therefore encouraging to see that a
large percentage of notes constitute motifs after the RL training. However, it is
important to take into account that a motif is represented here as a group of
8 events of which 3 are unique, which is evidently not uncommon. Also, rep-
etition of motifs is extremely rare even after training, probably due to the fact
that this is a very difficult behavior for the network to learn, regardless of the
reward value associated with it. In any case, rewarding this type of patterns

57

6.3. PRE-TRAINED/BOTH SETS Chapter 6. Experiments and analysis of results

is conducive towards more compositional variety, which is very important for
the musicality of the pieces. Additionally, the difference between pre and post
training compositions is substantial, which is excellent.

Name of statistic Pre-RL Post-RL Best value
Notes in motif 22.95 ± 0.65 % 77.31 ± 2.14 % 79.72 %
Notes in repeated
motif 0.22 ± 0.05 % 0.88 ± 0.61 % 1.95 %

Table 6.8: Statistics regarding motifs in compositions

VIII End with a quarter note - Although this rule is not able to affect a very large
number of compositions, the post-RL composer is more than twice as likely to
compose a piece ending with a quarter note than the pre-RL composer. This
means that our reward methodology applied here is working fairly well, espe-
cially given that the number of quarter notes is roughly the same before and
after training. This is important because if the number of quarter notes had in-
creased, the network could have been introducing a bias and composing more
quarter notes randomly in order to increase the chance of getting rewarded in
this way, instead of learning the intended behavior. Since this is not the case, we
can confirm that the reward is leading to the intended result.

Pre-RL Post-RL Best value
0.77 ± 0.27 % 1.60 ± 1.36 % 3.80 %

Table 6.9: Statistics regarding the average percentage of compositions which end with
a quarter note

IX End with the tonic - This rule was clearly successful, affecting roughly one third
of compositions after one of the runs. This is another remarkable result since the
behavior it rewards is not linear, i.e., the reward is not attributed at an obvious
or consistent time-step.

Pre-RL Post-RL Best value
15.91 ± 1.32 % 29.62 ± 2.21 % 33.00 %

Table 6.10: Statistics regarding the average percentage of compositions which end with
the tonic note

X The sub-tonic should be followed by the tonic - We can see that this rule
also led to the desired outcome. In this case the reward is applied directly,
i.e., at a certain state (when a sub-tonic has been played) the network gets an
immediate reward for playing the tonic note. This is the main reason behind its
clear success.

58

Chapter 6. Experiments and analysis of results 6.3. PRE-TRAINED/BOTH SETS

Pre-RL Post-RL Best value
0.53 ± 0.04 3.94 ± 1.08 4.95

Table 6.11: Statistics regarding the average number of sub-tonics followed by tonics per
composition.

Pre-RL Post-RL Best value
0.69 ± 0.02 2.90 ± 0.45 3.38

Table 6.12: Statistics regarding the average number of opposite seconds after leaps
(intervals greater or equal than a fifth) per composition.

XI After a leap, play the opposite note - This is another impactful rule, which
works for the same reasons as the previous one.

XII Direction changes - This rule is implemented in a complex fashion and is gen-
erally quite difficult to describe, let alone learn. Regardless, due to the fact that
the application of the reward is simultaneous with the principal behavior that it
means to promote (the direction change), the function is able to affect the final
compositions in a meaningful way.

Pre-RL Post-RL Best value
2.67 ± 0.13 9.06 ± 1.64 12.04

Table 6.13: Statistics regarding the average number of changes in pitch direction after
three or more of the last six intervals in the same direction per composition.

XIII Begin with a quarter rest - This rule was without a doubt the most successful out
of all the novel rewards tested. This was due to its relative simplicity and con-
sistency. However, the reason why this rule worked very well compared to, for
instance, the rule regarding late quarter notes, sheds light onto the methodol-
ogy that leads to impactful reward functions in the context of music composition
which will be discussed in the conclusion.

Pre-RL Post-RL Best value
2.66 ± 0.44 % 88.64 ± 2.95 % 93.20 %

Table 6.14: Statistics regarding the average number of changes in pitch direction after
three or more of the last six intervals in the same direction per composition.

6.3.2 Section B

Rules I,II,VII,IX,X,XI mentioned in 6.2.1 for section A worked similarly well for sec-
tion B, as we can see in table X, and therefore do not warrant further analysis. Rule
XIII does not apply to section A. We proceed to analyze the rules which lead to dif-
ferent results with the section B rule-set, and explain why these results make sense
in this context:

59

6.3. PRE-TRAINED/BOTH SETS Chapter 6. Experiments and analysis of results

Name of statistic Pre-RL Post-RL Best value
Notes off key 2.71 ± 0.17% 0.19 ± 0.15 % 0.03 %
Notes excessively re-
peated 19.71 ± 0.68 % 0.12 ± 0.15 % 0.00 %

Notes in motif 22.95 ± 0.65 % 36.82 ± 24.74 % 71.21 %
Notes in repeated
motif 0.22 ± 0.05 % 2.24 ± 1.63 % 4.47 %

Compositions end-
ing with tonic 15.91 ± 1.32 % 38.16 ± 13.06 % 56.0 %

Number of sub-
tonic/tonic se-
quences

0.53 ± 0.04 1.15 ± 0.82 2.06

Number of opposite
seconds after leap 0.69 ± 0.02 1.73 ± 0.82 2.91

Table 6.15: Statistics regarding rules I,II,VII,IX,X and XI in compositions

III Note lengths - Section B should have slower notes, having a high number of
quarter notes and octave notes. No other note length should be prevalent. This
is clearly achieved, and the steep increase in quarter notes shows the power of
the rewards since longer note lengths are more difficult to reward, as mentioned
previously. The elimination of sixteenth notes is also extremely effective.

Note length Pre-RL Post-RL Best value
1/16 17.63 ± 0.66 0.02 ± 0.01 0.01
1/8 9.78 ± 0.40 20.56 ± 14.16 17.98
1/4 2.76 ± 0.14 13.69 ± 7.07 23.55
1/2 0.79 ± 0.07 0.0 ± 0.0 0.0
1 0.29 ± 0.03 0.0 ± 0.0 0.0
>1 0.23 ± 0.03 0.0 ± 0.0 0.0

Table 6.16: Statistics regarding number of notes with specific note lengths per compo-
sition

IV Intervals - 2 In this section, intervals equal to a fourth or above should be preva-
lent. This is clearly achieved for every interval in this range, while still having
a fair amount of seconds and thirds so that the composition does not become
saturated with large intervals.

V Resolve large leaps - In this case, we see that the number of resolved leaps is
similar to section A, while the percentage of resolve leaps is lower. This may
be due to the fact that leaps are rewarded as intervals in this section or perhaps
due to the fact that notes are generally more distant in this section, which makes
specific pitch behaviors more difficult to learn.

2 As in section A, we performed a new training run with new statistics to obtain these results.

60

Chapter 6. Experiments and analysis of results 6.3. PRE-TRAINED/BOTH SETS

Interval Pre-RL Post-RL Best value
perfect fourths 2.54 ± 0.07 6.38 ± 2.78 11.62
diminished fifths 0.43 ± 0.03 0.73 ± 0.70 1.63
non-preferred per-
fect fifths 1.01 ± 0.06 1.36 ± 0.85 2.86

preferred perfect
fifths 0.56 ± 0.05 3.59 ± 1.28 4.85

minor sixths 0.43 ± 0.04 0.88 ± 0.31 1.45
major sixths 0.46 ± 0.03 2.69 ± 1.27 4.18
minor sevenths 0.33 ± 0.03 1.86 ± 0.90 2.95
major sevenths 0.17 ± 0.01 0.70 ± 0.97 2.62
octave jumps 0.49 ± 0.06 0.73 ± 0.23 1.08
total large intervals 6.41 ± 0.20 18.91 ± 5.03 26.78
percentage of large
intervals 24.78 ± 0.52 % 67.16 ± 7.45 % 78.71 %

Table 6.17: Statistics regarding number of intervals in compositions

Name of statistic Pre-RL Post-RL Post-RL
Percentage of leaps
resolved 75.18 ± 0.96 % 64.37 ± 6.27 % 73.24 %

Number of leaps re-
solved 0.73 ± 0.02 1.58 ± 0.44 2.02

Table 6.18: Statistics regarding leaps larger than a fifth per composition

61

6.3. PRE-TRAINED/BOTH SETS Chapter 6. Experiments and analysis of results

VI Avoid high correlation - We can see a noticeable increase in the correlations
when compared to section A. This is likely due to the fact that section B features
longer notes, which increase the number of held note events in the composition.
As we mentioned earlier, this can lead to a high correlation between current and
previous compositions, but this is acceptable and is not indicative of repetitive
compositions.

Name of statistic Pre-RL Post-RL Post-RL
Correlation with lag 1 0.18 ± 0.01 0.45 ± 0.13 0.26
Correlation with lag 2 0.17 ± 0.02 0.34 ± 0.21 0.13
Correlation with lag 3 0.16 ± 0.01 0.45 ± 0.13 0.61

Table 6.19: Statistics regarding correlation in compositions

VIII End with a quarter note - In this section, this rule is much more effective. This
is due to the fact that quarter notes are more prevalent given the note length
rule, making it easier to learn to compose quarter notes at specific time-steps.

Pre-RL Post-RL Post-RL
0.77 ± 0.27 % 27.66 ± 19.71 % 61.10 %

Table 6.20: Statistics regarding the average number of compositions which end with a
quarter note

XII Direction changes - This rule did not work well in this rule-set. The reason
for this is hard to distinguish, but this result is most likely still related to the
increased distance between notes on average.

Pre-RL Post-RL Post-RL
2.67 ± 0.13 1.90 ± 1.25 4.101

Table 6.21: Statistics regarding the average number of changes in pitch direction after
three or more of the last six intervals in the same direction per composition.

XIV End with a quarter note and two quarter rests - While the first part of this
rule worked relatively well, achieving a massive increase in frequency, the sec-
ond part did not. This is due to the fact that the reward for the pause is only
applied when the composition is of the form [...,1,0,0,0,...], whereas the other
rewards referring to quarter notes can be applicable in any situation of the form
[...,X,0,0,0,...], which is 36 times more likely to appear in the exploration pro-
cess. This makes successful experiences with late pauses very rare, which leads
to an agent that has not learned this behavior properly.

62

Chapter 6. Experiments and analysis of results 6.4. OTHER RL CONFIGURATIONS

Name of statistic Pre-RL Post-RL Best value
Number of quarter
notes at the start
of the last bar (per
composition)

0.001 ± 0.001 0.295 ± 0.196 0.38

Number of quarter
rests in the last 8
notes of the last bar
(per composition)

0.001 ± 0.001 0.024 ± 0.028 0.07

Table 6.22: Statistics regarding the average behavior in the last bar of the compositions.

6.4 Other RL configurations

6.4.1 Other RNNs with both rule-sets

Galician Basic RNN (2.5)

As mentioned earlier, the other RNNs were trained with the same rule-sets, using the
same values for rewards and the same hyper-parameters. The Galician Basic RNN at
85 % accuracy reacted well to the Reinforcement Learning training, mantaining its
musicality and composing varied and somewhat pleasing pieces. The note repetition
was cut down significantly to only 0.4 % and the notes off key were also reduced to
approximately 1 %. The note length rules worked well, apart from a lack of sixteenth
notes in section A, since the Galician rule-set was tuned for the pre-trained version
of the network, which composes many sixteenth notes. Some other rules such as
promoting the compositions of thirds or early pauses did not manage to affect the
outputs consistently, but with some manual tuning (specifically for this configura-
tion) this can be solved. For higher accuracies, the network clearly becomes less
flexible and composes with adequate statistics but lacking any musicality, focusing
on two or three notes for the entirety of the piece. This demonstrates how important
it is to monitor the accuracy of an RNN when combining it with the RL Tuner.

Pre-trained+Galician Basic RNN (3.5)

The Pre-trained+Galician Basic RNN performed virtually as well as the Pre-trained
RNN with both rule-sets, which is remarkable. For every accuracy, the network
displayed no excessive repetition, few notes off key, appropriate intervals and note
lengths, and even managed to fulfill some of the more demanding tasks such as
composing early pauses in 99.8 % of compositions in our training run. The pieces
themselves also feature a lot of variety while still sounding very Galician due to
frequent ascensions and descents in pitch. The fact that this network worked so well
is a testament to the fact that composing good music should always involve a mix of a
general and specific dataset, which is the case for this RNN configuration and rule-set.

63

6.4. OTHER RL CONFIGURATIONS Chapter 6. Experiments and analysis of results

Figure 6.3: This image is taken from the piano-roll representation of a sample generated
by the Galician Basic RNN trained with Both Rule-sets (2.5). We can clearly see that
the network is being repetitive but this behavior would not be punished by the auto-
correlation rule, given the distance between notes, or by the repetition rule since it does
not repeat the same note more than eight times.

Galician Attention RNN (4.5)

Unfortunately, the Galician Attention RNN was not as successful as the others. It
appears that the network did not react well to the RL Training for any of the ac-
curacies, performing poorly in many measures. The notes off key, for instance, are
very prevalent (between 20 % and 30 % of all notes), and the excessively repeated
notes reached 6.7 % in one of the training runs, which is unacceptable and evidently
noticeable. The outputs display these issues clearly, as well as a lack of consistency
in note lengths throughout a single piece and jarring variations in tonal range. The
reason for this poor performance is difficult to pinpoint, especially since care was
taken to monitor the network’s accuracy in order to prevent it from overfitting. It is
possible that due to the large amount of training steps taken when compared to the
other RNNs, this network becomes too confident about the next note and does not
adapt to the rule-set, but the note density probabilities do not indicate this clearly.

6.4.2 Other rule-sets

Zero reward(X.2)

3The only purpose of experimenting with this reward mode is to display a funda-
mental difference between the RNN and the RL Tuner environment. One would
expect that this reward mode, containing only the reward from the reward RNN,
would yield equivalent results to the original RNN. However, we must recall that the
network attempts to learn which behavior leads to the most reward. Since usually

3X.2 Refers to configuration 1.2, 2.2, 3.2, 4.2 and 5.2 .

64

Chapter 6. Experiments and analysis of results 6.4. OTHER RL CONFIGURATIONS

the most likely note is the held note event, the network starts composing using this
action at virtually every state in order to maximize the reward. This means that the
final compositions have a very noticeable excess of long notes and pauses, sometimes
longer than 16 time-steps. We can conclude that the role of the rule-set as part of
the reward function is to steer the composition away from this behavior, rewarding
relevant behavior and not just absence of notes. In other words, the RL environment
requires a well-rounded rule-set in order not to descend into this passive mode of
composition, which is an important aspect of this architecture not highlighted in the
original paper [2].

Figure 6.4: This image is taken from the piano-roll representation of a sample generated
by the Pre-trained Basic RNN trained with the Zero Reward mode (3.2). We can see that
the composition features a very excessive amount of held note events (0, in the RL Tuner
representation).

Original rule-set(X.3)

The original rule-set achieved success with the pre-trained RNNs it was designed
for. The pre-trained RNN as well as the Pre-trained+Galician Basic RNN benefited
from the rule-set by repeating notes less often and staying in key, as well as avoid-
ing long notes or silences, as was expected. However, it is worth noting that this
rule-set did not work well for the other two RNNs, failing to achieve even its most
essential functions such as avoiding repetition. The exception to this phenomenon
was the Galician Basic RNN with 85 % accuracy, which performed acceptably but not
particularly well. The reason for this behavior is perhaps that the original rule-set
features relatively low values for its rewards and did not manage to influence the
final compositions. The idea behind trying this rule-set with every configuration was
to show empirically that it does not work well every time and it is not viable for any
application (for specific genres, it is better to use specific rule-sets).

65

6.5. SUMMARY OF THE RESULTS Chapter 6. Experiments and analysis of results

Galician rule-set(X.4)

This reward mode was surprisingly effective with some configurations. Namely, the
Pre-trained+Galician Basic RNN and the Galician Basic RNN benefited immensely
from these rewards, and did not have an issue with key adherence or repetition as
would be expected with a rule-set which does not help prevent these issues. Instead,
the compositions achieved the intended statistics and were in fact comparable to
the main configuration. With the pre-trained RNN, however, this was not the case,
leading to plenty of repetition and displeasing note choices. This is indicative of the
issues that the pre-trained RNN has when compared to the other RNNs trained with
a more specific dataset. The attention RNN also did not work well with this rule-set,
although it mostly managed to stay in key without any associated reward for this
purpose, which is remarkable.

6.5 Summary of the results

Given the amount of statistics which are relevant to evaluate the results, as well as
the variety of RNN/rule-set configurations tested, it is extremely challenging to sum-
marize the analysis of the experimental procedure. With this in mind, we decided
to elaborate a comprehensive set of charts which highlight the effectiveness of each
reward for every configuration. Specifically, these charts represent heat maps which
measure the variation of a statistic after the RL training. This variation is taken as
positive or negative, depending on the behavior we would like to observe in the sec-
tion. For instance, in section B, an increase of repeated note by 15 % would be added
to be observed as -15 in the graph, while an increase of quarter notes by 10 would be
seen as +10. These variations are then summed into a total variation which acts as
a rating of how well the configuration adapted to the rule-set. It is worth noting that
these heat maps are useful as summaries of the results, but they do not encompass
all of the complexities which were discussed in the previous sections, which is why
they were not presented earlier.

By visualizing the statistics in this manner, we can get a general idea of the ef-
fectiveness of each configuration, which is extremely useful as a summarization of
the results that have been presented in this chapter. By ranking the configurations
according to their rating (total variation), we can see that these charts are in line
with what was mentioned before. The pre-trained RNNs typically are more success-
ful due to their malleability, as mentioned before. The combination of the rule-sets
is the most effective, since it the reward values were tuned for it, but the Galician
rule-set on itself is also quite effective in some cases. If we briefly look at the heat
maps for configurations 4.X, it is very clear that the Galician Attention RNN does not
yield good results, as we mentioned above.

Legend for the heat maps:

• The value of each cell is determined by the variation of each statistic, as ex-
plained above. Positive variations are seen in blue, whereas negative variations

66

Chapter 6. Experiments and analysis of results 6.5. SUMMARY OF THE RESULTS

Section A Total variation Section B Total variation
1 1.5 223.36 (avg.) 1.5 219.45 (avg.)
2 3.5 (0.95) 210.13 2.4 (0.95) 195.15
3 3.4 (0.9) 203.00 1.4 156.12
4 3.4 (0.95) 183.03 3.5 (0.85) 149.08
5 3.4 (0.85) 177.00 3.4 (0.85) 128.93

Table 6.23: This table ranks the configurations according to their total variation in the
heatmaps below.

are seen in red, as detailed in the legend on the right of each chart.

• The rows represent the configurations that were tested (RNN/rule-set combi-
nations), which we denominated in section 6.1. Configuration 1.5 was the
main object of our study, and therefore its training procedure was run five sep-
arate times, hence the configurations of the form “ 1.5 (run X) ”. The same is
the case for the other RNNs, which were trained for three different training
accuracies, indicated by “(0.85)”, “(0.9)” or “(0.95)”.

• The columns represent the number of the statistic, which corresponds to the
number of the line in which it appears in the original output file. The legend
for the statistics (columns) can be seen below:

67

6.5. SUMMARY OF THE RESULTS Chapter 6. Experiments and analysis of results

Name of statistic
17 Percentage of notes off key
18 Percentage of notes in motif
19 Percentage of notes in repeated motif
20 Percentage of excessively repeated notes
22 Avg. autocorrelation with lag 1
23 Avg. autocorrelation with lag 2
24 Avg. autocorrelation with lag 3
27 Avg. num. of major sevenths per composition
28 Avg. num. of (non-preferred) perfect fifths per composition
29 Avg. num. of major sixths per composition
30 Avg. num. of perfect fourths per composition
33 Avg. num. of (non-preferred) major thirds per composition
34 Avg. num. of preferred perfect fifths per composition
40 Avg. num. of larger notes per composition
42 Avg. num. of whole notes per composition
44 Avg. num. of half notes per composition
46 Avg. num. of quarter notes per composition
48 Avg. num. of eighth notes per composition
50 Avg. num. of sixteenth notes per composition
52 Percent. of compositions starting with a quarter rest
54 Percent. of compositions starting the last bar with quarter note
56 Percent. of compositions ending the last bar with one/two quarter rests 4

58 Percent. of compositions ending with a quarter note)
60 Percent. of composition ending with the tonic
62 Avg. num. of sub-tonic/tonic sequences per composition
64 Avg. num. of opposite seconds after leap per composition
66 Avg. num. of direction changes per composition

Table 6.24: This table ranks the configurations according to their total variation in the
heat maps below.

4 Using this measure, compositions that end with two quarter note rests are counted twice for
the final percentage. This is acceptable for the heat maps since this percentage is still a good rep-
resentation of the the effectiveness of the rule. However, this measure is not as rigorous as the one
presented in section 6.3.

68

Chapter 6. Experiments and analysis of results 6.5. SUMMARY OF THE RESULTS

Figure 6.5: Statistical variations between pre and post-RL compositions, Section A, part
1

69

6.5. SUMMARY OF THE RESULTS Chapter 6. Experiments and analysis of results

Figure 6.6: Statistical variations between pre and post-RL compositions, Section A, part
2

70

Chapter 6. Experiments and analysis of results 6.5. SUMMARY OF THE RESULTS

Figure 6.7: Statistical variations between pre and post-RL compositions, Section B, part
1

71

6.5. SUMMARY OF THE RESULTS Chapter 6. Experiments and analysis of results

Figure 6.8: Statistical variations between pre and post-RL compositions, Section B, part
2

72

Chapter 7

Conclusions and future work

In this chapter we conclude the report by summarizing what we have observed in the
previous chapters and suggesting some future work. The first section is dedicated to
summarizing what has been mentioned in the earlier sections, explaining the main
objective of this project and how it was achieved, focusing on the contributions and
the original work done. Then we summarize the findings that were observed after
analyzing the experimental results. This is one of the most relevant parts of the
report and contains essential information for any future authors using the RL Tuner
for research. We finish by suggesting two extensions to this work regarding Inverse
Reinforcement Learning (IRL) and emotional rule-sets (happy or sad), pairing them
with two respective proofs of concept to motivate further research.

7.1 Overview of the project

In this report, our goal was to compose in a specific style using the RL Tuner and
the Melody RNN. First, we chose a simple genre - The Galician Xota - and gathered
a dataset including only pieces from this genre. We then adapted the dataset by
converting it to be fully MIDI based and separating tracks in order to have poly-
phonic files only. After this, we augmented the dataset adapting a known method
and trained three different RNN configurations with our dataset: the Basic RNN, the
pre-trained Basic RNN and the New Attention RNN, the latter of which we created
by adding attention mechanisms to the Basic RNN using the existing Melody RNN
code. We monitored these training attempts, recording their training and evaluation
accuracy in order to produce checkpoints which were not overfitting our dataset.

After this, we created a rule-set which represented our genre. This involved manu-
ally analyzing the dataset to infer the underlying musical composition rules such as
frequency of certain intervals and typical note lengths, as well as some more specific
behavior. The new rule-set was divided into two different sets, one for each type of
section in the piece, which share some of the same rules but differ in others. We then
translated these conceptual rule-sets into a set of rewards to be used as the music
theory reward in the RL Tuner, and tuned these values using the Pre-trained RNN
with the combination of the new and original rule-sets. This led to four new reward

73

7.2. SUMMARY OF NOVEL FINDINGS Chapter 7. Conclusions and future work

modes, the Galician rule-set (Section A and B) and the combination of the Galician
and original rule-sets (Section A and B).

After this, experiments were performed for every combination of the Pre-trained
RNN, Galician Basic RNN, Pre-trained+Galician Basic RNN and the Galician Atten-
tion RNN with the five different reward modes available: no rl (no RL training),
zero reward (no music theory reward), music theory only (original rule-set), Gali-
cian only (new rule-set only) and both rule sets (original+new rule-set). The main
configuration (Pre-trained RNN, both Rule-sets) was analyzed in detail and the other
configurations’ outputs were also taken into account to produce a detailed set of find-
ings about the RL Tuner training procedure and the development of new rewards,
suggesting how it should be done in future work.

7.2 Summary of novel findings

The extensive analysis of every configuration as well as the other training procedures
mentioned in previous chapters highlight a remarkable set of findings regarding the
RL Tuner and artificial music composition in general:

1. The impact of a music theory reward is influenced by the following factors:

• Position in time - Rewarding early behaviors is generally easier than late
behaviors because the possible state space increases with time (at t = 1
there are 38 possible states, at t = 2 there are 382). This is supported by
the success of the rule regarding early pauses compared to the failure of
the rule regarding late pauses.

• Event specificity - Rewarding quarter notes is a lot more effective than
rewarding quarter rests since the first reward spans 37 events and is there-
fore much more likely to appear in exploration and allow the network to
learn this behavior. We can observe this behavior in rule XIV.

• Time specificity - Rewarding a behavior generally (without specifying a
time in the composition) is a lot more effective than rewarding a behavior
at a certain time-step only. This can be seen by comparing the results of
rules IV and VIII.

• Complexity of behavior - During initial experiments, some more complex
rules were tried. However, the Deep Q Network had difficulty learning
these rules since the relation between the state/action and the reward
was not evident or consistent.

• Distance between action and reward - The late tonic rule worked rela-
tively well but it did not manage to influence the majority of compositions.
This is likely due to the fact that the reward for finishing with this note is
attributed at the end of the composition, which is usually some time-steps
away from the state at which this action was taken, which alienates the
reward attribution from the action that caused it. This requires the state

74

Chapter 7. Conclusions and future work 7.2. SUMMARY OF NOVEL FINDINGS

to model previous notes very accurately so that the Deep Q Network can
understand why the reward was attributed, but it is often unreliable.
• Sparsity - Sparse rewards were inevitable in this project, as they are in

many other real world scenarios, but they are generally problematic when
using traditional Deep Q Learning. In some cases, we would like to re-
ward the network for composing a quarter rest ([1,0,0,0]), but this is a
difficult behavior to learn since the reward is only attributed when this ex-
act sequence occurs and not when a similar one occurs, such as [1,0,0,2].
This issue is very prevalent in the Reinforcement Learning community
and there are some solutions which could be useful [56], but they would
require substantial changes to the architecture.
• Oppression - The two discarded rules mentioned in 5.2.2 clearly show

the role that an oppressive rule can play in an RL environment. The fact
is that some rules/rewards can overpower the agent and negatively af-
fect the impact of other rules. This issue can sometimes be alleviated by
tuning the value of the reward function, but sometimes the concept of
the reward itself is not appropriate. In our environment, any rewards that
promote repetition, notes off key or long silences are generally considered
oppressive because they tend to cause the network to degenerate into a
model which ignores other rules and loses its musicality.
• Value of the reward - This is the most obvious of the factors. Evidently,

attributing a larger reward to a certain behavior will make it more preva-
lent in the post-RL compositions. However, it is important to tune the
reward values in order to find a balance between the rules, and larger
rewards may not always lead to better results. Additionally, the reward
scaler must be taken into account when choosing these values, since acts
as a multiplier for the total music theory reward.

2. Every parameter of the RL Tuner, including the number of training steps and
the RL algorithm, can directly influence the effectiveness of a set of music
theory rewards.

3. Intra-procedural and inter-procedural variance (as defined in 5.3) are serious
issues, which should be taken into account in order to produce meaningful
statistics about post-RL results.

4. Using a trained recurrent neural network with very high training accuracy can
make for a highly inflexible Reward RNN which does not adapt well to music
theory rewards since its note probability density is very narrow and does not
allow for other viable actions. To prevent this, the training accuracy must
be monitored during the RNN training procedure and checkpoints must be
produced at earlier stages, before the accuracy approaches 100 %. In other
words, it is necessary not only to prevent overfitting, but overconfidence as
well.

5. Adding attention mechanisms to an RNN requires more training steps and does
not necessarily improve the outputs in the context of music composition. This

75

7.3. FUTURE WORK Chapter 7. Conclusions and future work

means that a lot of the credit for the impressive outputs of the original At-
tention RNN [6] must be attributed to the lookback encoding. The RL Tuner
also does not work well with attention mechanisms in our experience, but with
the lookback encoding or some other augmentation this model may be more
compatible with the RL rewards.

6. Networks trained with large, varied datasets tend to produce a fair amount
of underwhelming results but remain flexible, which is ideal for the RL Tuner.
This is the case even after being trained with a smaller dataset, as is the case
for the Pre-trained+Galician Basic RNN.

7. The quality of pre-RL and post-RL compositions are not necessarily directly
correlated.

8. The issues of excessive repetition and overly long notes are not equally serious
for every network. The Galician Basic RNN, for instance, did not suffer from
these issues as much as the other networks.

9. The original rule-set is not always effective at its most basic tasks such as avoid-
ing repetition, as we saw with the Galician Basic RNN and the New Attention
RNN.

10. A proper music theory reward is essential and without it the RL Tuner can
deteriorate the quality of the compositions, as we saw with the zero reward
mode.

7.3 Future work with proofs of concept

7.3.1 Inverse Reinforcement Learning

There are two major extensions which can be done to this work. The first of these
is to automate the attribution of specific values to rewards. The fact is that tuning
the rewards was the most time consuming part of this project and it is clear that for
the original RL Tuner this tuning was performed using grid search (attempting every
combination with a set of possible values for each reward), which surely required a
very large amount of resources. To be clear, each of our training runs took approx-
imately two hours on an Nvidia Geforce GTX 1080. Ideally, it would be interesting
to apply a method that is used in areas such as Robotics, commonly know as Inverse
Reinforcement Learning (IRL). This could be implemented in different manners, but
entropy based methods such as [57] have been very influential and would possi-
bly be a good fit. This would be a great breakthrough since it would automate the
bottleneck of developing a new rule-set and therefore improve the style-transferring
capability of the RL Tuner.

To prove that this idea is indeed viable, we decided to perform a brief proof of
concept. The objective was to make the Pre-trained Basic RNN compose as many
eighth notes (or more) has we had seen by analyzing the dataset. First, we had

76

Chapter 7. Conclusions and future work 7.3. FUTURE WORK

to adapt the code which is used to measure statistics of pre/post-RL compositions
in real time (as they are being composed), in order to measure the same statistics
on MIDI files. After this was performed, we measured the amount of eighth notes
which would be in a Galician composition if it were 96 notes long (18.26) and set
this as the target for our network. Then, we begin with a zero reward for composing
the eighth note and check the post-RL statistics. If it is below the target, we run
the training procedure again, increasing the reward value by 5. After 3 iterations,
the network produced an adequate number of eighth notes per composition (33.65),
and the procedure was complete. This is evidently a very simple and inefficient way
to perform IRL, but it empirically demonstrates that transferring the style of a MIDI
dataset or RNN composer to another RNN composer using the RL Tuner is possible.
The results/code for this experiment can be obtained from the project’s repository
[5].

7.3.2 Emotional rule-set

The second extension which could be applied to the current work would be an emo-
tional rule-set. Creating music which provokes specific emotions is a very powerful
idea since this could be the breakthrough that artificial music composition needs to
be used by the general public. In this project we have demonstrated that the RL
Tuner can be used not only to tune an RNN with some general rules, but can also be
used to drastically change its compositional style. The main aspects which determine
the emotion of a song are its scale, frequent intervals and rhythmic characteristics
[58, 59]. These can all be tuned using the RL Tuner, which means that the devel-
opment of an emotional rule-set could allow us to steer an RNN composer based
on any dataset to a specific emotion, accomplishing the task of controlled affective
musical composition.

Again, we decided to elaborate a small demonstration in order to show that this
concept is viable. We implemented two different reward functions: one for happy,
joyful music and the other one for sad, melancholic music. The first was made to
compose in C Major, rewarding shorter, major intervals and faster notes. The second
was made to compose in C Minor, rewarding minor intervals and slower notes, and
encouraging rests (note off events). We also included some of the rewards from the
original rule-set in for both emotions. After training the Pre-trained Basic RNN with
these two rule-sets, some surprisingly successful results were obtained. Specifically,
the compositions reacted well to these rule-sets, composing music which respects
the rules but is still diverse. In the end, we believe it would be easy to distinguish
the happy compositions from the sad ones and classify them correctly, which is ex-
tremely promising. The samples and statistics for this experiment can be found in
the project repository [5].

77

Appendices

78

Appendix A

Relevant code from Magenta

This code was taken directly from the Magenta repository [55] in order to ensure
that it had not been modified.

Figure A.1: This picture is taken from the Melody RNN code, and it clearly shows that
the original Attention RNN used the lookback encoding.

79

Chapter A. Relevant code from Magenta

Figure A.2: This picture is taken from the original RL Tuner code, and it displays the
function that computes the autocorrelation for rule 7 (mentioned in 5.2.1)

80

Appendix B

RNN Training Charts

Figure B.1: Chart comparing the training accuracy of the Basic RNN with the original
(non augmented) dataset and the new augmented dataset.

81

Chapter B. RNN Training Charts

Figure B.2: Chart comparing the training accuracy of the New Attention RNN with the
original (non augmented) dataset and the new augmented dataset.

82

Chapter B. RNN Training Charts

Figure B.3: Chart portraying the training accuracy and evaluation accuracy throughout
the Galician Basic RNN training procedure.

83

Chapter B. RNN Training Charts

Figure B.4: Chart portraying the training accuracy and evaluation accuracy throughout
the Pre-trained+Galician Basic RNN training procedure.

Figure B.5: Chart portraying the training accuracy and evaluation accuracy throughout
the Galician Attention RNN training procedure.

84

Appendix C

Ethics checklist

Yes No
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells?
Does your project involve the use of human embryos?
Does your project involve the use of human foetal tissues / cells?
Section 2: HUMANS
Does your project involve human participants?
Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than from
Human Embryos/Foetuses i.e. Section 1)?
Section 4: PROTECTION OF PERSONAL DATA
Does your project involve personal data collection and/or processing?
Does it involve the collection and/or processing of sensitive personal
data (e.g. health, sexual lifestyle, ethnicity, political opinion, religious
or philosophical conviction)?
Does it involve processing of genetic information?
Does it involve tracking or observation of participants? It should be
noted that this issue is not limited to surveillance or localization data.
It also applies to Wan data such as IP address, MACs, cookies etc.
Does your project involve further processing of previously collected
personal data (secondary use)? For example Does your project in-
volve merging existing data sets?
Section 5: ANIMALS
Does your project involve animals?
Section 6: DEVELOPING COUNTRIES
Does your project involve developing countries?
If your project involves low and/or lower-middle income countries,
are any benefit-sharing actions planned?
Could the situation in the country put the individuals taking part in
the project at risk?

85

Chapter C. Ethics checklist

Yes No
Section 7: ENVIRONMENTAL PROTECTION AND SAFETY
Does your project involve the use of elements that may cause harm
to the environment, animals or plants?
Does your project deal with endangered fauna and/or flora /pro-
tected areas?
Does your project involve the use of elements that may cause harm
to humans, including project staff?
Does your project involve other harmful materials or equipment, e.g.
high-powered laser systems?
Section 8: DUAL USE
Does your project have the potential for military applications?
Does your project have an exclusive civilian application focus?
Will your project use or produce goods or information that will
require export licenses in accordance with legislation on dual use
items?
Does your project affect current standards in military ethics e.g.,
global ban on weapons of mass destruction, issues of proportional-
ity, discrimination of combatants and accountability in drone and au-
tonomous robotics developments, incendiary or laser weapons?
Section 9: MISUSE
Does your project have the potential for malevo-
lent/criminal/terrorist abuse?
Does your project involve information on/or the use of biological-,
chemical-, nuclear/radiological-security sensitive materials and ex-
plosives, and means of their delivery?
Does your project involve the development of technologies or the cre-
ation of information that could have severe negative impacts on hu-
man rights standards (e.g. privacy, stigmatization, discrimination), if
misapplied?
Does your project have the potential for terrorist or criminal
abuse e.g. infrastructural vulnerability studies, cybersecurity related
project?
SECTION 10: LEGAL ISSUES
Will your project use or produce software for which there are copy-
right licensing implications?
Will your project use or produce goods or information for which there
are data protection, or other legal implications?
SECTION 11: OTHER ETHICS ISSUES
Are there any other ethics issues that should be taken into considera-
tion?

86

Appendix D

Ethical and professional
considerations

Regarding sections 1, 2 and 3, my project does not involve humans, embryos, fe-
tuses, cells or tissues in any way, so the answer was “No” for all of the questions.
Regarding section 4, my project does not involve any personal or private data, so the
answers were all “No” Regarding section 5, my project does not involve animals as
can be clearly seen. Regarding section 6, my project is not related to any developing
countries, so the answer was “No’. Regarding question 7, my project cannot possibly
have any impact on the environment and definitely does not constitute a safety haz-
ard, so the answers were all “No”. Regarding section 8, my project has no military
foreseeable military use, so I answered all questions negatively. Regarding section 9,
my project does not have any relevant damaging impacts on mankind or society, so
all of the answers were “No”.

Regarding section 10, the musical pieces used for the dataset can potentially have
copyright associated with them, which would also imply that the generated compo-
sitions could involve copyright issues. However, after consulting all of the sources
there was clearly no copyright information, so the answer for both of the questions
in this section was “No”. Finally, I believe there are no other ethical issues to discuss
regarding this project.

87

Bibliography

[1] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL
https://doi.org/10.1162/neco.1997.9.8.1735.

[2] Natasha Jaques, Shixiang Gu, Richard E. Turner, and Douglas Eck. Tuning re-
current neural networks with reinforcement learning. CoRR, abs/1611.02796,
2016. URL http://arxiv.org/abs/1611.02796.

[3] Olof Mogren. C-RNN-GAN: continuous recurrent neural networks with adver-
sarial training. CoRR, abs/1611.09904, 2016. URL http://arxiv.org/abs/

1611.09904.

[4] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. Midinet: A convolutional gen-
erative adversarial network for symbolic-domain music generation. In Pro-
ceedings of the 18th International Society for Music Information Retrieval Con-
ference, ISMIR 2017, Suzhou, China, October 23-27, 2017, pages 324–331,
2017. URL https://ismir2017.smcnus.org/wp-content/uploads/2017/10/

226_Paper.pdf.

[5] Rodrigo Mira. Rl rnn composer. https://github.com/miraodasilva/RL_RNN_
MusicComposer. Date of access: Wed, 29 Aug 2018.

[6] Elliot Waite. Generating long-term structure in songs and stories. https://

magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn. Date
of access: Wed, 29 Aug 2018.

[7] Florian Colombo and Wulfram Gerstner. Bachprop: Learning to compose music
in multiple styles. CoRR, abs/1802.05162, 2018. URL http://arxiv.org/abs/

1802.05162.

[8] J J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79
(8):2554–2558, 1982. ISSN 0027-8424. doi: 10.1073/pnas.79.8.2554. URL
http://www.pnas.org/content/79/8/2554.

[9] Gino Brunner, Yuyi Wang, Roger Wattenhofer, and Jonas Wiesendanger. Jam-
bot: Music theory aware chord based generation of polyphonic music with
lstms. CoRR, abs/1711.07682, 2017. URL http://arxiv.org/abs/1711.

07682.

88

https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1611.02796
http://arxiv.org/abs/1611.09904
http://arxiv.org/abs/1611.09904
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/226_Paper.pdf
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/226_Paper.pdf
https://github.com/miraodasilva/RL_RNN_MusicComposer
https://github.com/miraodasilva/RL_RNN_MusicComposer
https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn
https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn
http://arxiv.org/abs/1802.05162
http://arxiv.org/abs/1802.05162
http://www.pnas.org/content/79/8/2554
http://arxiv.org/abs/1711.07682
http://arxiv.org/abs/1711.07682

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Chun-Chi J. Chen and Risto Miikkulainen. Creating melodies with evolving
recurrent neural networks. In Proceedings of the INNS-IEEE International Joint
Conference on Neural Networks, pages 2241–2246, Piscataway, NJ, 2001. IEEE.
URL http://nn.cs.utexas.edu/?chen:ijcnn01.

[11] Nimesh Sinha. Understanding lstm and its quick implementation in keras for
sentiment analysis. https://goo.gl/cwcEBG. Date of access: Wed, 29 Aug
2018.

[12] Douglas Eck and Jürgen Schmidhuber. Finding temporal structure in music:
blues improvisation with LSTM recurrent networks. In Proceedings of the 12th
IEEE Workshop on Neural Networks for Signal Processing, NNSP 2002, Martigny,
Valais, Switzerland, September 4-6, 2002., pages 747–756, 2002. doi: 10.1109/
NNSP.2002.1030094. URL https://doi.org/10.1109/NNSP.2002.1030094.

[13] Douglass M. Green. Intgral, 3:227–234, 1989. ISSN 10736913. URL http:

//www.jstor.org/stable/40213921.

[14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. CoRR, abs/1409.0473,
2014. URL http://arxiv.org/abs/1409.0473.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pages 6000–6010, 2017. URL http://papers.nips.cc/

paper/7181-attention-is-all-you-need.

[16] Qingtong Wu. A brief overview of attention mechanism. https://medium.com/
syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129.
Date of access: Wed, 29 Aug 2018.

[17] Hang Chu, Raquel Urtasun, and Sanja Fidler. Song from PI: A musically plau-
sible network for pop music generation. CoRR, abs/1611.03477, 2016. URL
http://arxiv.org/abs/1611.03477.

[18] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. Musegan:
Multi-track sequential generative adversarial networks for symbolic music gen-
eration and accompaniment. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-
7, 2018, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/

paper/view/17286.

[19] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. Deepbach: a steerable
model for bach chorales generation. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 Au-
gust 2017, pages 1362–1371, 2017. URL http://proceedings.mlr.press/

v70/hadjeres17a.html.

89

http://nn.cs.utexas.edu/?chen:ijcnn01
https://goo.gl/cwcEBG
https://doi.org/10.1109/NNSP.2002.1030094
http://www.jstor.org/stable/40213921
http://www.jstor.org/stable/40213921
http://arxiv.org/abs/1409.0473
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
http://arxiv.org/abs/1611.03477
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17286
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17286
http://proceedings.mlr.press/v70/hadjeres17a.html
http://proceedings.mlr.press/v70/hadjeres17a.html

BIBLIOGRAPHY BIBLIOGRAPHY

[20] Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition.
Information science and statistics. Springer, 2007. ISBN 9780387310732. URL
http://www.worldcat.org/oclc/71008143.

[21] Kevin P. Murphy. Machine learning - a probabilistic perspective. Adaptive com-
putation and machine learning series. MIT Press, 2012. ISBN 0262018020.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

[23] Sebastian Ruder. An overview of gradient descent optimization algorithms.
http://ruder.io/optimizing-gradient-descent/index.html. Date of ac-
cess: Wed, 29 Aug 2018.

[24] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adver-
sarial networks. CoRR, abs/1406.2661, 2014. URL http://arxiv.org/abs/

1406.2661.

[25] Ian J. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. CoRR,
abs/1701.00160, 2017. URL http://arxiv.org/abs/1701.00160.

[26] Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8:229–256, 1992. doi:
10.1007/BF00992696. URL https://doi.org/10.1007/BF00992696.

[27] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution:
A continuous relaxation of discrete random variables. CoRR, abs/1611.00712,
2016. URL http://arxiv.org/abs/1611.00712.

[28] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. CoRR, abs/1611.01144, 2016. URL http://arxiv.org/abs/

1611.01144.

[29] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence gen-
erative adversarial nets with policy gradient. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA., pages 2852–2858, 2017. URL http://aaai.org/ocs/index.

php/AAAI/AAAI17/paper/view/14344.

[30] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. Improved techniques for training gans. In Advances
in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 2226–2234, 2016. URL http://papers.nips.cc/paper/

6125-improved-techniques-for-training-gans.

90

http://www.worldcat.org/oclc/71008143
http://arxiv.org/abs/1412.6980
http://ruder.io/optimizing-gradient-descent/index.html
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1701.00160
https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1611.01144
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans

BIBLIOGRAPHY BIBLIOGRAPHY

[31] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-
riculum learning. In Proceedings of the 26th Annual International Confer-
ence on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-
18, 2009, pages 41–48, 2009. doi: 10.1145/1553374.1553380. URL http:

//doi.acm.org/10.1145/1553374.1553380.

[32] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. CoRR,
abs/1511.06434, 2015. URL http://arxiv.org/abs/1511.06434.

[33] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
CoRR, abs/1411.1784, 2014. URL http://arxiv.org/abs/1411.1784.

[34] Christopher Harte, Mark Sandler, and Martin Gasser. Detecting harmonic
change in musical audio. In Proceedings of the 1st ACM Workshop on Audio
and Music Computing Multimedia, AMCMM ’06, pages 21–26, New York, NY,
USA, 2006. ACM. ISBN 1-59593-501-0. doi: 10.1145/1178723.1178727. URL
http://doi.acm.org/10.1145/1178723.1178727.

[35] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. In The 9th
ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA, 13-15 September 2016,
page 125, 2016. URL http://www.isca-speech.org/archive/SSW_2016/

abstracts/ssw9_DS-4_van_den_Oord.html.

[36] Aäron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol
Vinyals, Koray Kavukcuoglu, George van den Driessche, Edward Lockhart,
Luis C. Cobo, Florian Stimberg, Norman Casagrande, Dominik Grewe, Seb
Noury, Sander Dieleman, Erich Elsen, Nal Kalchbrenner, Heiga Zen, Alex
Graves, Helen King, Tom Walters, Dan Belov, and Demis Hassabis. Parallel
wavenet: Fast high-fidelity speech synthesis. CoRR, abs/1711.10433, 2017.
URL http://arxiv.org/abs/1711.10433.

[37] Romain Sabathe, Eduardo Coutinho, and Björn W. Schuller. Deep recurrent
music writer: Memory-enhanced variational autoencoder-based musical score
composition and an objective measure. In 2017 International Joint Conference
on Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017, pages
3467–3474, 2017. doi: 10.1109/IJCNN.2017.7966292. URL https://doi.

org/10.1109/IJCNN.2017.7966292.

[38] Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray
Kavukcuoglu. Automated curriculum learning for neural networks. In Pro-
ceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, pages 1311–1320, 2017. URL
http://proceedings.mlr.press/v70/graves17a.html.

[39] Bei Peng, James MacGlashan, Robert T. Loftin, Michael L. Littman, David L.
Roberts, and Matthew E. Taylor. Curriculum design for machine learners in

91

http://doi.acm.org/10.1145/1553374.1553380
http://doi.acm.org/10.1145/1553374.1553380
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1411.1784
http://doi.acm.org/10.1145/1178723.1178727
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html
http://arxiv.org/abs/1711.10433
https://doi.org/10.1109/IJCNN.2017.7966292
https://doi.org/10.1109/IJCNN.2017.7966292
http://proceedings.mlr.press/v70/graves17a.html

BIBLIOGRAPHY BIBLIOGRAPHY

sequential decision tasks. In Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12,
2017, pages 1682–1684, 2017. URL http://dl.acm.org/citation.cfm?id=

3091403.

[40] Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically mo-
tivated goal exploration processes with automatic curriculum learning. CoRR,
abs/1708.02190, 2017. URL http://arxiv.org/abs/1708.02190.

[41] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduc-
tion. Adaptive computation and machine learning. MIT Press, 1998. ISBN
0262193981. URL http://www.worldcat.org/oclc/37293240.

[42] Christopher J. C. H. Watkins and Peter Dayan. Technical note q-learning. Ma-
chine Learning, 8:279–292, 1992. doi: 10.1007/BF00992698. URL https:

//doi.org/10.1007/BF00992698.

[43] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep
reinforcement learning. CoRR, abs/1312.5602, 2013. URL http://arxiv.org/

abs/1312.5602.

[44] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. CoRR, abs/1509.06461, 2015. URL http://arxiv.

org/abs/1509.06461.

[45] C. Schmidt-Jones. Understanding Basic Music Theory. CreateSpace Inde-
pendent Publishing Platform, 2015. ISBN 9781508534297. URL https:

//books.google.co.uk/books?id=T6orrgEACAAJ.

[46] William Thompson. Intervals and scales. pages 107–140, 12 2013.

[47] The midi association. https://www.midi.org/. Date of access: Wed, 29 Aug
2018.

[48] Tabplayer.online. http://tabplayer.online/. Date of access: Wed, 29 Aug
2018.

[49] Selenium - web browser automation. https://www.seleniumhq.org/. Date of
access: Wed, 29 Aug 2018.

[50] Ole Martin Bjrndalen. Mido - midi objects for python. https://github.com/

olemb/mido/. Date of access: Wed, 29 Aug 2018.

[51] Magenta. Melody rnn. https://github.com/tensorflow/magenta/tree/

master/magenta/models/melody_rnn, . Date of access: Wed, 29 Aug 2018.

[52] Luis Perez and Jason Wang. The effectiveness of data augmentation in image
classification using deep learning. CoRR, abs/1712.04621, 2017. URL http:

//arxiv.org/abs/1712.04621.

92

http://dl.acm.org/citation.cfm?id=3091403
http://dl.acm.org/citation.cfm?id=3091403
http://arxiv.org/abs/1708.02190
http://www.worldcat.org/oclc/37293240
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
https://books.google.co.uk/books?id=T6orrgEACAAJ
https://books.google.co.uk/books?id=T6orrgEACAAJ
https://www.midi.org/
http://tabplayer.online/
https://www.seleniumhq.org/
https://github.com/olemb/mido/
https://github.com/olemb/mido/
https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1712.04621

BIBLIOGRAPHY BIBLIOGRAPHY

[53] Meinard Müller and Frans Wiering, editors. Proceedings of the 16th Interna-
tional Society for Music Information Retrieval Conference, ISMIR 2015, Málaga,
Spain, October 26-30, 2015, 2015. ISBN 978-84-606-8853-2.

[54] Magenta. Tuning rnns with rl. https://github.com/tensorflow/magenta/

tree/master/magenta/models/rl_tuner, . Date of access: Wed, 29 Aug 2018.

[55] Magenta: Music and art generation with machine intelligence. https://

github.com/tensorflow/magenta. Date of access: Wed, 29 Aug 2018.

[56] Martin A. Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas
Degrave, Tom Van de Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Sprin-
genberg. Learning by playing solving sparse reward tasks from scratch. In Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 4341–4350,
2018. URL http://proceedings.mlr.press/v80/riedmiller18a.html.

[57] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Deep inverse rein-
forcement learning. CoRR, abs/1507.04888, 2015. URL http://arxiv.org/

abs/1507.04888.

[58] Aalf Gabrielsson and Erik Lindstrm. The role of structure in the musical ex-
pression of emotions. pages 367–400, 01 2010.

[59] Eduardo Coutinho and Nicola Dibben. Psychoacoustic cues to emotion in
speech prosody and music. Cognition & emotion, 27(4):658–684, 2013.

93

https://github.com/tensorflow/magenta/tree/master/magenta/models/rl_tuner
https://github.com/tensorflow/magenta/tree/master/magenta/models/rl_tuner
https://github.com/tensorflow/magenta
https://github.com/tensorflow/magenta
http://proceedings.mlr.press/v80/riedmiller18a.html
http://arxiv.org/abs/1507.04888
http://arxiv.org/abs/1507.04888

	1 Introduction
	2 Background
	2.1 Deep Learning/RL
	2.1.1 Recurrent Neural Networks
	2.1.2 Generative Adversarial Networks
	2.1.3 Other methods applied to music composition
	2.1.4 Deep Q Learning in the context of music generation

	2.2 Overview of key music theory concepts
	2.2.1 Fundamentals of music theory
	2.2.2 Fundamentals of melodies

	3 Dataset
	3.1 General description
	3.2 Musical formats
	3.3 Collection process and preprocessing

	4 Melody RNN
	4.1 Brief description of the model
	4.2 Overview of the basic training procedure
	4.3 Attention Mechanisms
	4.4 Overfitting
	4.5 Final configurations

	5 RL Tuner
	5.1 Description
	5.2 Description of rule-sets
	5.2.1 The original rule-set
	5.2.2 The Galician rule-set
	5.2.3 Combining the two rule-sets

	5.3 Training procedure
	5.4 Preparing the RL Tuner

	6 Experiments and analysis of results
	6.1 Outline of the experimental procedure
	6.2 Melody RNN, No RL
	6.2.1 Pre-trained Basic RNN (1.1)
	6.2.2 Galician Basic RNN (2.1)
	6.2.3 Pre-trained+Galician Basic RNN (3.1)
	6.2.4 Galician Attention RNN (4.1)

	6.3 Pre-trained/Both sets
	6.3.1 Section A
	6.3.2 Section B

	6.4 Other RL configurations
	6.4.1 Other RNNs with both rule-sets
	6.4.2 Other rule-sets

	6.5 Summary of the results

	7 Conclusions and future work
	7.1 Overview of the project
	7.2 Summary of novel findings
	7.3 Future work
	7.3.1 Inverse Reinforcement Learning
	7.3.2 Emotional rule-set

	Appendices
	A Relevant code from Magenta
	B RNN Training Charts
	C Ethics checklist
	D Ethical and professional considerations

