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Abstract

Stable Diffusion (SD) is a popular open-source model pre-trained on billions of
image-text pairs, designed to generate images from textual prompts. With its exten-
sive ecosystem and supportive community, SD offers functionalities like inpainting
and outpainting along with a multitude of other features enabling enhanced con-
trol over generation. Notably, SD can be fine-tuned on consumer-level hardware,
enabling users to adapt the model to their specific needs. While diffusion models
have been foundational in text-to-audio (TTA) systems, training them from scratch
remains prohibitively expensive for many consumers. Moreover, these models may
lack the functionality, support and tools that the SD ecosystem provides.

In Bootstrapping Stable Diffusion for Audio Synthesis, we pioneer the exploration
of fine-tuning SD to generate non-music audio spectrograms. A primary aim is to
democratise consumer access to fine-tuning their own text-to-audio systems and to
harness the capabilities of the SD ecosystem for audio generation. Through exten-
sive empirical experiments, we find that while SD showed proficiency in generating
certain audio classes, it faced challenges in others, suggesting a potential need for
a more comprehensive training dataset. We also highlight the versatility of the SD
ecosystem for both researchers and users.

Although our model did not surpass the current state-of-the-art, the insights em-
phasise the potential of SD in audio generation, its prospective role as a consumer-
accessible TTA system, and avenues for further research. We conclude by addressing
ethical considerations, including potential misuse and copyright concerns, empha-
sising the importance of responsible advancement in this domain. Audio samples
illustrating our model’s capabilities can be accessed here.


https://sites.google.com/view/diss-audio-outputs
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . v v v v v i e e e e e e e e e e e e e e e e e e 1
1.2 Project OVEIVIEW . . . . v v v v v v v vt ottt et e e e e 3

1.1 Motivation

Generative Al is used - with increasing prevalence - to generate high-quality data
points in language, image and audio domains. Latent diffusion models (LDMs) [1] -
a class of generative model - (and the Stable Diffusion (SD) LDM specifically) have
enabled consumer-level accessibility to state-of-the-art (SOTA) image generation ca-
pability with relatively accessible compute requirements. Alongside enabling acces-
sible generation of high-quality images, SD also offers the capability to be fine-tuned
to generate images of novel concepts.

Text-to-speech (TTS) and Text-to-audio (TTA) - or speech/audio synthesis - refers to
using text-conditioning (i.e. prompts) to generate realistic samples of speech (e.g.
speaking the words given by the prompt with a specific denoted style) or audio
effects (e.g. natural/urban sounds such as bird song, or traffic). TTS and TTA have
evolved with continual advent of new technologies and models - from early synthesis
techniques [2, 3, 4], to initial networks (such as CNNs [5] and RNNs [6, 7, 8, 9]),
and eventually to more recent advances such as Generative Adversarial Networks
(GANs) [10, 11, 12, 13] and Transformer-based architectures [14, 15, 16]. Most
recently, TTS/TTA models have found success using diffusion-based architectures to
generate audio with promising results (SOTA in some cases) [17, 18, 19, 20, 21, 22].

Riffusion, a recent software release [23], has successfully fine-tuned SD to generate
spectrograms of music, with positive and high-quality qualitative results. Inspired
by Riffusion, this research aims to fine-tune an off-the-shelf SD model to evaluate
its feasibility as a TTA system. Successful synthesis of audio in this manner would

1



1.1. MOTIVATION Chapter 1. Introduction

greatly increase the accessibility of high-quality audio synthesis - enabling easier
implementation and adoption of TTA systems in future applications and use-cases.
Successful research outcomes will involve the creation of a fine-tuned SD model
capable of generating spectrograms of recognisable audio.

SD is a popular generative model, with a wealth of tools, software and tutorials
created by its community. For example, Hugging Face - a platform for machine
learning providing access to code and model checkpoints - maintain a package to
support implementation and fine-tuning of popular diffusion models (including SD)
named ‘Diffusers’ [24]. Diffusers provides easy to download SD model checkpoints,
as well as training code for multiple different fine-tuning approaches - such as Low-
Rank Adaptation (LoRA) [25] and Dreambooth [26] - which promise access to fine-
tuning SD on consumer-level hardware (e.g. RTX 2080 TI and 3080 cards). One
motivation for this research is to evaluate SD’s performance at generating audio
on consumer-grade hardware as if these fine-tuning approaches are effective, they
would increase accessibility and proliferation of audio generative tools - each fine-
tuned for a specific use-case or need.

The existence of the SD community also provides ample opportunity for further re-
search and application of tools developed for SD. For example, SD provides the ca-
pability for techniques such as img2img (using a prompt as an image to generate
another), inpainting (generating masks of new images over patches of existing im-
ages) and negative prompts (prompting elements to denote what the model should
not generate); all of which can also be easily provided using front-end Uls such as
Automatic1111 [27]. Trained SD model checkpoints can be easily inserted into these
existing tools, allowing us to apply these techniques to the audio domain.

Finally, this research will also serve as an investigation into whether a latent diffusion
model pre-trained on image data can serve as a parameter efficient audio generative
tool. Recent research found that fine-tuning a vision transformer (pre-trained on
images) on audio data, providing improved performance with the usage of fewer
tunable parameters [28]. This research also provides a first look into whether SD can
also provide parameter-efficient audio generation through this cross-domain transfer
learning.

The three motivations of this research are therefore:

* Evaluate the feasibility of fine tuning a SD model on consumer-grade hardware
to create a TTA system - thereby providing an accessible route for consumers
to create their own fine-tuned systems.

* Investigate whether a fine-tuned LDM can provide parameter-efficient audio
generation through cross-domain transfer learning.

* Demonstrate the potential for future research by leveraging the SD ecosystem
for the audio domain.
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1.2 Project overview

This project’s primary aim is to perform fine-tuning on a frozen SD model with the
goal of producing usable audio. This research consists of multiple components:

* A background literature review detailing the history of audio synthesis, in-
cluding current SOTA approaches; the background of diffusion models, includ-
ing Stable Diffusion; and project-specific domain details such as spectrogram
conversion and fine-tuning methodologies. This will establish the theoretical
framework for this research, and contextualise our study within the broader
field of audio synthesis.

* An experimental exploration on the efficacy of LoRA fine-tuning in producing
spectrograms and audio. This report includes details on each successive phase
of our experimentation, the impact of different training hyper-parameters,
along with results and conclusions from each phase. This is followed by a final
assessment of the project output and success along with quantitative metrics.

* A brief exploration into applying SD techniques and tools to demonstrate po-
tential further research avenues. This will involve a demonstration of the
adaptability of our model for other use-cases, laying the groundwork for fu-
ture research.

We will be using two audio datasets - AudioCaps [29] and AudioSet [30] - which
have both been extensively used as training data for audio tasks, such as generation
[31, 32, 33], classification [34, 35, 36], tagging [35] and source separation [37].
We primarily conduct our fine-tuning on multiple consumer-level GPUs (between
NVIDIA GTX 1080 to RTX 3080 in terms of age) and conduct a total of 105 training
runs. We also provide a companion web-page where example audios may be heard.!

https://sites.google.com/view/diss-audio-outputs
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2.5 Cross-domain transfer learning . .. ................ 19

2.1 Text-to-audio synthesis

2.1.1 Early synthesis

Before modern deep learning approaches, audio synthesis was conducted with tra-
ditional techniques focused on wave manipulation. Some early techniques include:
Additive Synthesis (which involve combining sine waves of differing levels and fre-
quencies [2]), Subtractive Synthesis (filtering parts of a frequency spectrum until
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Chapter 2. Background 2.1. TEXT-TO-AUDIO SYNTHESIS

a specific signal is obtained [3]), and Frequency Modulation (modulating the fre-
quency of a waveform with another waveform [4]). These early forms of synthesis
served as the foundation for further developments in audio synthesis. However,
limitations include the requirement for manual programming and parameter ad-
justment, a lack of naturalness, and a limited level of control for more targeted
adjustments of generated audio.

Formant synthesis, a specific method of speech synthesis, distinguishes itself from
traditional techniques by focusing on modeling the resonant frequencies (formants)
of the human vocal tract [38] - while it shares similarities with prior forms of synthe-
sis in terms of involving manual signal manipulation, formant synthesis specifically
targets speech synthesis by aiming to accurately reproduce the resonant properties
of speech production. MITalk [39] and Klatalk [40] were examples of text-to-speech
models utilising formant synthesis. This focus on formant modelling aimed to pro-
vide an audio-modelling approach solely targeting speech synthesis.

Following these methodologies, sample-based synthesis became prominent. Rather
than use a fundamental waveform (such as sine/saw waves), sampled sounds were
used as the base waveform to be adjusted. Sampled sounds in this context re-
fer to recorded audio from a pre-existing source and can include: natural/urban
recordings (e.g. traffic/bird song), instrument recordings (e.g. individual instru-
ment notes) and speech. Samples can also be defined as a conversion of analogue
sound to a digital representation [41]. Combining samples (along with additional
manual adjustments) resulted in the synthesis of new audio waveforms, providing
greater flexibility and sophistication over earlier synthesis techniques. Speech syn-
thesis using sampling can also be referred to as ‘concatenative synthesis’, which is
the concatenation of segments of speech samples.

2.1.2 Machine learning and initial networks

Hidden Markov Models (HMM) eventually followed sample-based synthesis as the
most widely-used speech synthesis methodology [42]. These models were also one
of the first machine learning (ML) generative models used for synthesis. HMMs are
trained on pairs of speech samples and associated captions, with the aim of learning
the statistical relationship between them. Input captions to this model are encoded
as a sequence of ‘hidden states’, which each represent a particular acoustic/linguistic
sound. By estimating state transition probabilities, HMMs generate speech by deter-
mining the most likely sequence of hidden states for a given caption. HMMs are able
to capture temporal dynamics and acoustic variations, while encoding linguistic in-
formation to generate speech aligned with input captions. HMMs offer flexibility
in generating speaker identities, emotions, and speaking styles, but have limitations
affecting naturalness and quality [42].

Deep-learning networks - such as Recurrent Neural Networks (RNNs) and Convolu-
tional Neural Networks (CNNs) - began to be used for audio and speech synthesis
following HMMs. RNNs are a type of network designed to handle sequential (or tem-
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2.1. TEXT-TO-AUDIO SYNTHESIS Chapter 2. Background

poral) data by providing connections within the network - these connections (which
could form cycles) allowed for output from certain nodes to affect subsequent in-
put to these same nodes. Long Short-Term Memory networks (LSTMs) are an RNN
first proposed in 1997 [43], but first began to be used for speech and audio syn-
thesis in the mid-2010s. LSTMs consist of a number of memory cells, which each
contain gates to modify the information held in these memory cells. These gates
facilitate the model’s ability to selectively retain and forget information over long se-
quences, making LSTMs effective in capturing temporal dependencies in speech and
audio data. An example of LSTMs for speech synthesis involve the network detailed
in 2015 [6] (followed by further optimisations rivalling HMM performance in the
following year [7] but with lower latency and resource overhead).

CNNs are a feed-forward network originally designed for processing structured grid-
like data, such as images (or audio spectrograms) [44]. CNNs consist of multiple
layers, in which multiple convolutions are applied using a sliding window (or ker-
nel) moved across an image. Through the use of layers responsible for upsampling
and downsampling input images, this sliding window allows for the identification of
features and creation of subsequent feature maps. WaveNet is a deep neural network
using a modified CNN in which dilated causal convolutions are used (a form of con-
volution which uses skips to capture long-range dependencies). These convolutions
enable WaveNet to generate natural sounding speech [5] and - when combined with
text-conditioning - state-of-the-art (SOTA) performance with text-to-speech genera-
tive quality for both English and Mandarin.

Tacotron is a text-to-speech (TTS) system which consists of an encoder, an attention-
based decoder and a post-processing net [8] using the NLP (natural learning pro-
cessing) model seq2seq as its architectural backbone [45]. Attention refers to a
mechanism which allows a neural network to focus on specific parts of input data.
Attention can be formulated as such:

Attention(Q, K, V') = softmax (QKT) Vv 2.1)
o e '

where Q is the query vector (the elements which attention is being applied), K is the
key vector (elements compared with queries to determine their relevance) and V is
the value vector (content of the key element).

The encoder in Tacotron uses an RNN to process and encode input text embeddings.
The decoder uses attention to determine the relevance of different parts of the en-
coded input sequence, generating a corresponding spectrogram - speech is recon-
structed using the Griffin-Lim algorithm [46]. Tacotron outperformed the previous
LSTM-focused architecture presented in 2016 [7] (in a mean opinion score test)
without requiring more complex components needed for HMM-focused approaches.
Tacotron 2 enhances on the first architecture by incorporating a WaveNet vocoder to
directly generate raw audio samples while also incorporating training on increased
amounts of data [47]. Another prominent RNN-based model is WaveRNN - released
in 2018 [9].
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2.1.3 Recent generative models

Following these initial networks, Generative Adversarial Networks (GANs) [48] were
explored for speech and audio synthesis. GANs are composed of two core compo-
nents: a generator network and a discriminator network. The generator is responsi-
ble for generating synthetic samples (resembling real data) whereas the discrimina-
tor is responsible for distinguishing input data as either real or a sample generated
by the generator. During training, these two networks compete, the generator at-
tempting to generate samples to ‘fool’ the discriminator, while the discriminator’s
parameters are updated based on its on-going performance with classifying the fake
images correctly. This training process continues iteratively with the goal of reduc-
ing the discriminator’s ability to distinguish between these two types of data-points
(through the generation of increasingly convincing synthetic data) - after the train-
ing process completes, the learnt underlying data distribution is used to generate
new samples.

Audio GAN-based synthesis models include WaveGAN (applying GANs to generate
raw-waveform audio) and SpecGAN (using GANs to generate spectrograms) [10,
11], MelGAN (improved conditional waveform synthesis with reduced compute re-
quirements and a focus on producing mel-spectrograms) [12] and Parallel WaveGAN
(a model capable of producing multiple samples at once, resulting in improve gen-
eration speed and lower latency) [13].

Transformers - first detailed in 2017 [49] - are an architecture utilising multiple
self-attention (an attention mechanism capable of weighing importance of differ-
ent components of an input sequence) blocks in an encoder-decoder configuration.
Transformers were initially designed for NLP tasks (such as machine translation)
but were later adapted for audio and speech synthesis. These self-attention blocks
allow transformers to model long-range dependencies, enabling increased audio
generation quality. Transformers, with their ability to more effectively model lin-
guistic and contextual information (through attention), began to be used for TTS
systems - unlocking further increases in generative sample quality [14]. Prominent
transformer-based TTS models include FastSpeech [15], RobustTrans [50], and Fast-
Speech 2 [16].

2.2 Diffusion

2.2.1 Foundations of Diffusion Models

One of the current classes of models achieving SOTA performance in image (and au-
dio) generation are Diffusion Probabilistic Models - or Diffusion Models (DMs); the
most prominent of these was first conceived in 2015 [51] and then expanded upon in
2020 (here referred to as Denoising Diffusion Probabilistic Models (DDPMs)) [52].

The core principle of DMs involves gradually adding Gaussian noise to an input
image and then training a neural network to recover the original image. By learn-
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2.2. DIFFUSION Chapter 2. Background

ing how to reverse this process (i.e. learning an approximation of the reverse data
distribution), the model can generate new images from the original image’s data
distribution.

The ‘forward diffusion’ pass of adding noise to an input image can be defined as a
Markov chain that gradually adds Gaussian noise according to a variance schedule

/817 '“uﬂT [52]:

T

Q<$1:T’x0> = HQ(%‘ZE},A), Q(xt‘xtfﬁ = N(iﬂt; (1 - 5:5%71), 515[) (2.2)

t=1

This equation describes the chain, where each successive = term depends on the
value which came before it (z;_;) and the variance schedule (5,) - in DDPM, this
schedule is set to scale linearly from 10~ to 0.02 .

The ‘reverse diffusion’ pass is performed in DDPM using a neural network trained
to gradually denoise the sample obtained from the forward diffusion pass (via a
series of ‘denoising steps’) generated from the forward diffusion step (depicted in
Figure 2.1). This network uses a U-Net architecture with each step consisting of
ResNet (utilising skip connections between network layers) [54] and self-attention
blocks [49].

O e

Q’(Xz|xz 1)

Figure 2.1: Reverse diffusion overview (DDPM). Reproduced from [1].

The U-Net architecture - as detailed in 2015 [55] - consists of an encoder and a
decoder path consisting of successive encoder/decoder blocks. Through the encoder
blocks, the feature map for an input image is obtained through successive unpadded
convolutional layers and downsampled with pooling layers between each layer. Af-
ter sufficient encoding blocks, the image is upsampled via transposed-convolutions.
Each decoder block is connected to a corresponding encoding block with skip con-
nections - concatenating the feature maps of these blocks together. DDPM utilised
this architecture but modified this using wide ResNet blocks [56], group normalisa-
tion [57] and self-attention blocks [49].

At the end of the forward pass in DDPM (as 7' — oc¢), the sample z; can be approx-
imately considered an isotropic Gaussian distribution. DDPM attempts to approxi-
mate the reverse distribution ¢(z;_|x;) and therefore enable the sampling of z from
a normal distribution. As this distribution is intractable, DDPM uses the (detailed)

13 can also be learned through the process of reparameterisation [53] (expressing this random
variable with a fixed distribution, enabling faster sampling at each step of the forward diffusion
process).
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neural network for this approximation, learning to predict the mean and covariance
matrices for each 7

T
po(xo.r|y) = poxr H (wialxe),  po(xi—1|me) = N(xi—1; o, t), Xg(ay, 1)) (2.3)

DDPM was assessed on dataset CIFAR10 [58] using three metrics: Inception Score
(IS), Fréchet Inception Distance (FID) and Negative Log Likelihood loss. These are
all distinct (but related) measures of generated image quality. IS evaluates the distri-
bution of generated images (by evaluating how well a separate network can classify
generated images) whereas FID instead compares distributions of a generated im-
age set and a set of real images - lower scores in FID and higher scores in IS signify
higher sample qualities. There is typically a trade-off between FID and IS when op-
timising generative models: IS can be considered as a measure of quality of image
generation, whereas FID more specifically measures the similarity of generated data
distribution to ground truth (or its ‘realism’) [59]. NLL determines the likelihood
that a generative model can generate an image - with lower score signifying higher
sample quality. Table 2.1 compares DDPM to existing generative models, showing
SOTA performance using IS, and near SOTA performance using FID.

Model FID IS NLL
Diffusion (original) [51] - - <5.40
Gated PixelCNN [60] 4.60 65.93 3.03 (2.90)
Sparse Transformer [61] - - 2.80
PixelIQN [62] 5.29 49.46 -
EBM [63] 6.78 38.2 -
NCSNv2 [64] 31.75 - -
NCSN [65] 8.87+0.12 25.32 -
SNGAN [66] 8.22+0.05 21.7 -
SNGAN-DDLS [67] 9.094+0.10 15.42 -
StyleGAN2 + ADA (v1) [68] 9.74 + 0.05 3.26 -
DDPM 9.46+0.11 3.17 <3.75(3.72)

Table 2.1: Unconditional image generation results. Table recreated from [52].

Diffusion models are also capable of generating new samples based on ‘guidance’
from information such as text (or other samples). This ‘guided diffusion’ works by
conditioning the forward diffusion steps (seen here as y) by applying this condition-
ing information at each diffusion step:

T
po(zor) = po(ar H (@e-1]1, ) (2.4)
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2.2.2 Expansions and developments

From this foundation, there have been several developments expanding on DDPMs
resulting in improved generative performance, capabilities and robustness.

DDPM utilised a linear variance schedule () for forward diffusion noising steps,
however, subsequent research investigating adjustments to this schedule resulted in
increased performance. This improvement came in the form of IDDPM, an improved
model introduced in 2021 through experiments with the variance schedule [69].
Researchers found that using a ‘cosine’ variance schedule (over a linear schedule)
resulted in increased performance, especially for lower resolution images (such as
64x64 and 32x32). Specifically, the end of the forward diffusion process using the
linear noise schedule did not contribute much to sample quality (such that skipping
20% of the reverse diffusion process did not result in worse performance). This
new cosine variance schedule resulted in the destruction of less information than
necessary during forward diffusion (a; here represents the variance at time step ¢:

_f) B t/T+s w\°
at7m7 f(t)cos< 1T *E) (2.5)

The other key improvement made to DDPMs enabled the learning of variances in
the reverse diffusion process - which resulted in significantly fewer required forward
diffusion steps - using reparameterisation. This new learning objective resulted in
the required number of forward diffusion steps (to produce good samples) falling
from hundreds to less than 100 - with an associated reduction in NLL to 2.94 (from
3.72).

In the following year, further improvements for DMs arose through continued ab-
lation study, showcasing SOTA performance with a new model - referred to as ‘Ab-
lated Diffusion Models (ADMs)’ [70]. This paper explored a number of architectural
changes - each of these changes (except rescaling residual connections) resulted in
improved performance (along with a compounding effect when combined):

* Increasing depth of the model

* Increasing the number of attention heads

Applying attention at different resolutions

Using the residual block used in BigGAN [71] (following prior research [72])
* Rescaling residual connections with 1/ V2 (following [72, 73, 741)

Alongside these architectural changes, this model also explores using a classifier for
‘guidance’ in conditional image generation. A classifier conditioned on a specific
class is used to guide the forward diffusion by providing feedback at each step -
leveraging the classifier results to guide ADM in producing higher quality images.
Benchmarking on various ImageNet scales, ADM was found to beat IDDPM as well

10
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Model ImageNet 64x64 ImageNet 128x128 ImageNet 256x256
FID, sFID|, FID| sFID| FID| sFID|
BigGAN-deep [71] 4.06 3.96 6.02 7.18 6.95 7.36
IDDPM [69] 2.92 3.79 - — 12.26 5.42
LOGAN [75] — - 3.36 - - -
ADM 2.61 3.77 5.91 5.09 10.94 6.02
ADM (dropout) 2.07 4.29 - — — -
ADM-G (25 steps) - - 5.98 7.04 5.44 5.32
ADM-G - - 2.97 5.09 4.59 5.25

Table 2.2: Model performance comparison on ImageNet dataset at different resolutions.
ADM-G denotes classifier guidance, sFID refers to FID scaled to account for differences
in resolution between benchmarks. Table adapted from [70].

as SOTA GAN models (see Table 2.2). Further research in 2021 found that similar
performance could be achieved without the use of a classifier [76]. Classifier guid-
ance introduces complication with the necessity of needing to train an additional
classifier. A model using ‘classifier-free guidance’ (hence referred as CDM) involved
jointly training both an unconditional and conditional DM with a single network.
With a fixed probability, the label y in the conditional DM é€y(x,|y) is replaced with
a null label () [77]. During sampling, the model output is extrapolated further in
direction of €(z;|y) and away from é(z;|(}). s in equation 2.6 denotes the ‘scale’ of
guidance, which is set at s > 1.

€o(xely) = €o(w:|0) + 5 - (€o(wely) — €p(:4|0)) (2.6)

Adjusting this guidance scale resulted in FID monotonically decreasing and IS mono-
tonically increasing with increasing values of guidance. CDMs achieved SOTA FID
performance in 128x128 ImageNet against ADMs (achieving 1.48 against ADMs
2.07) and outperforming BigGAN-deep in FID and IS.

Shortly after the publication of CDMs, GLIDE was released [77], a model enabling
near-SOTA image generation and editing with text conditioning.> GLIDE explored
the use of classifier-free guidance, as well as CLIP guidance; CLIP is a neural network
trained to learn joint representations of text and image [78]. CLIP models contain an
image encoder and a caption encoder, and are trained on pairs of captions and im-
ages - CLIP generates a loss which denotes how close an image is to a caption. CLIP
guidance operates similarly to classifier guidance, but using a CLIP model in place
of a classifier. With this functionality, CLIP has previously been used to guide GAN-
based generative models using a provided text-caption [79, 80, 81] which inspired
its application to DMs.

2Similar to the concept of guidance, conditioning provides a vector to use additional information
to affect the generation process. Conditioning is the process of providing explicit instructions (such
as a text prompt) compared to the less explicit and more subtle influencing effect of guidance.
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Quantitative results from these two guidance strategies show classifier-free guidance
achieving favourable results over CLIP guidance. Classifier-free guidance achieve
pareto optimality with the trade-off in FID and IS, as well as achieving improved ‘Elo’
human evaluation scores in photorealism and caption similarity. Using classifier-free
guidance, GLIDE achieves zero-shot® generation quality quantitatively competitive
with SOTA models (e.g. transformer-based DALL-E) and qualitatively outperforming
with human evaluation.

2.2.3 Latent Diffusion Models and Stable Diffusion

Diffusion models require significant computational resources - resulting in restrictive
resource constraints for training and inference. Training the most powerful DMs can
require hundreds of GPU days [1] (e.g. 150-1000 V100 days for ADMs [70]) with
inference requiring resources in the region of 5 days to produce 50,000 samples
with ADM on a single A100 GPU [70]. Rombach et al. proposed the Latent Diffusion
Model (LDM) in 2022 [1] to improve accessibility to DMs - a diffusion model which
capitalises on encoding representations in latent space.

Models operating in pixel-space operate in a high-dimensional space. This space ne-
cessitates the need for significant compute, which incentivises the need to transform
image data into either lower-dimensional feature space or latent space. Latent space
refers to a low-dimensional abstract data representation which aims to compress
data by reducing the data distribution to a minimal representation. Encoding data
into latent space significantly lowers compute required to interact with this data and
only decoding back into pixel space after necessary computations are performed.

LDMs expand on previous diffusion models by running the forward-diffusion and de-
noising processes in latent space, rather than pixel space. The encoder ¢ encodes x
into a latent representation z = () and the decoder D reconstructs the pixel repre-
sentation/image from the latent (z = D(z) = D(e(x))). The architecture can be seen
in Figure 2.2. Forward diffusion (Diffusion Process) as previously discussed occurs
from Z to Zr, and the reverse diffusion process is performed using a U-Net, with
a Variational Autoencoder (VAE) used to encode and decode these representations
between pixel and latent space [82].

LDMs offer a few differences to existing DMs, the first of these focuses on introduc-
ing a new model of image compression - which is used to encode images into their
latent representations. This compression is separated into two stages: a “perceptual
compression” stage which removes high-frequency details, and a second “semantic
compression” stage in which the “generative model learns the semantic and concep-
tual composition of the data”[82]. This compression method results in a compression
which allows for more “faithful and detailed reconstructions than previous work”.

LDMs also introduce a new conditioning mechanism, offering flexible conditioning

3Zero-shot refers to the ability a model has to be generalised to unseen concepts. In this context,
GLIDE can generate images/concepts without explicit training on these specific concepts.
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Figure 2.2: LDM architecture illustrating usage of latent space. Reproduced from [1].
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using a domain specific encoder (denoted in Figure 2.2 as 7y). The representation
generated by this encoder is passed through a cross-attention layer, and added to
each layer of the denoising U-Net. This representation enters into the attention
layer as such (where ¢ is a function mapping the latent representation to a query
vector):

Attention(Q, K, V') = softmax (QKT) Vv (2.7)
) ) - \/C_Z .
where Q = WS - ¢y(z), K =W n(y), V=W n(y) (2.8)

LDMs were introduced with a CLIP-based text encoder to generate usable embed-
dings from text prompts. These embeddings are what are added to each cross-
attention layer. The result of these improvements is an image generation model,
which can be conditioned by a number of different modalities (e.g. text, image
etc.), capable of producing SOTA-levels in image quality via unconditional, text-
conditional and class-conditional generation.

Stable Diffusion (SD) is an open-source LDM trained on compute resources provided
by Al-firm Stability AI [1]. Since its release, SD has enabled consumer-level access
to SOTA conditioned image generation, as well as several other features, such as im-
age conditioning, negative prompts, image in-painting, and super-resolution. Other
prominent text-conditioning generative image models, including OpenAl's DALL-
E [83] and Midjourney. Inc.’s Midjourney [84]. These models - due to their closed-
source nature - are unable to be fine-tuned and therefore unsuitable for this research
exploring image generative models for audio generation.

SD was originally trained on the LAION2B-en dataset, an English language sub-
set of the LAION5B dataset [85] - a large-scale multi-modal dataset consisting of
5.85 billion image-text pairs (with 2.3 billion English pairs). For subsequent re-
leases of SD, further training was conducted on different subsets of the data such
as ‘laion-improved-aesthetics’ - a subset of LAION2B-en consisting of images greater
than 512x512 and filtered by quality and presence of watermarks. The most recent
1.x model is 1.5, which was trained for 237,000 steps at 256x256 on LAION2B-
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en, 194,000 steps at 512x512 on a high-resolution subset, then further trained for
515,000 steps using the ‘laion-improved-aesthetics’ dataset before resuming training
once more for 595,000 steps on a new ‘laion-aesthetics v2.5+’ subset.

SD 1.5 is therefore trained for almost 2 million steps, on over 2 billion data samples
of varying classes. SD is in constant development, with SD 0.9 XL released in June
2023 offering 1024 x 1024 image generation and SD 2.0 (released in November
2022) providing 768 x 768 image generation at the cost of higher memory require-
ments. SD 2.0 in particular also found that using a different text encoder (Open-
CLIP [86]) greatly improved the quality of generated images compared to earlier V1
releases.

SD - due to its open-source status - has been used prominently, resulting in a com-
munity of researchers and consumers supporting its continual development. Mul-
tiple consumer-targeted tools - such as Stability Al's DreamStudio* and the AUTO-
MATIC1111 WebUI [87] - have increased user accessibility to fine-tuning and run-
ning inference with SD models. These tools, as well as the work of Hugging Face in
improving accessibility to diffusion models [24] - has resulted in large communities
such as the Stable Diffusion subreddit® frequently discussing outputs, training details
and new developments. Tools - such as ControlNet [88] - based on new research also
offer additional flexibility and options for conditioning generative output. Research-
ing the limits of SD for generating audio has the potential to enable new paradigms
of generation by leveraging existing SD tools, research and communities.

2.2.4 Diffusion audio synthesis models

Despite their original purpose of image synthesis, recent research has also explored
using DMs for audio synthesis [89]. Pioneering works involve Diff-TTS (the first
application of applying DDPMs for spectrogram generation) [17], Grad-TTS (using
DDPMs to generate mel-spectrograms) [18] and ProDiff (reducing required itera-
tions through parameterisation) [19]. Other works include DiffWave (which con-
ditioned the vocoder on mel-spectrograms) [20], and bilateral denoising diffusion
models (BBDMs) (which proposed including an additional network to predict the
noising schedule used in the forward diffusion steps) [21].

These results show DMs clear capability in synthesising audio and speech - achiev-
ing SOTA performance (in subjective assessment with expert listeners [89]). The
low RTF values also indicate that diffusion-based TTS models can generate speech
with low latency, potentially making them practical for real-world (live) applications
where efficient synthesis is required.

DMs have also successfully been used for TTA generation in non-speech domains.
Examples include AudioLDM [31], Make-An-Audio [90] and TANGO [32] - which

“*https://dreamstudio.ai/
SFound at https://reddit.com/r/stablediffusion, this is a community ranked in the 99th percentile
by size across all communities on popular forum Reddit
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Methods Dataset MOS 1T RTF |

Diff-TTS [17] LJSpeech 4.337 0.035
Grad-TTS [18] LJSpeech 4.44 0.012
ProDiff [19] LJSpeech 4.08 0.04
NoreSpeech [22] LibriTTS 4.11

DiffWave [20] LJSpeech 4.47

BBDM [21] LJSpeech 4.48 0.438 -

Table 2.3: Performance of Diffusion-based TTS models. (S)MOS (Subjective Mean
Opinion Score) is a subjective measure used to evaluate quality and naturalness of
speech, RTF (Real-Time Factor) is a measure of speed/efficiency. Table adapted
from [89].

utilised a fine-tuned large language model to improve upon AudioLDM'’s previous
SOTA performance. Using Fréchet Audio Distance (FAD) - FID adapted for the audio
domain [91] - TANGO achieves a score of 1.59, beating AudioLDM’s score of 2.08
(and 1.96 when further fine-tuning AudioLDM on the AudioCaps dataset). This field
is under continual development, with AudioLDM2’s recent release in August 2023
exceeding TANGO as SOTA with a FAD of 1.42.

2.3 Spectrograms and Riffusion

2.3.1 Spectrogram: audio representation

Waveforms and spectrograms are visual representations of audio. A waveform is a
time-domain representation of a signal, illustrating changes in amplitude (loudness)
over time. Waveforms do not provide frequency information at specific points in time
so a spectrogram representation is needed to capture additional details of the sig-
nal. Audio spectrograms are visual representations of a particular audio’s frequency
- specifically, the magnitude and phase (the timing and position of this magnitude)
of different frequency components. Spectrograms are a frequency-domain represen-
tation of an audio signal, providing information about frequency over time.

Waveforms can be converted to spectrograms using short-time Fourier transform
(STFT), which approximates audio as a combination of sine waves of varying am-
plitudes and phases [23]. STFT is also invertible, which enables audio to be recon-
structed from a spectrogram image.

As audio signals in a digital system are digital, applying the STFT to a digital wave-
form involves using the discrete Fourier transform (DFT):

N—

X(wy) = Z z(t, e I#mkn/N (2.9)

—_

3

where X (wy) is the spectrum of the audio signal at a particular frequency, x(t,) is
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Spectrogram
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Figure 2.3: Example of a spectrogram - y-axis: frequency, x-axis time, colour: decibel.
Reproduced from [92]

the time signal at a specific time ¢,,, Z ! is the summation of contribution of each
sample from the original signal and e =Jimkn/N representing how a specific frequency
components are shifted in phase compared to a reference point. DFT allows us to de-
compose a signal into separate frequency components, which can then be displayed
visually on a spectrogram.

Mel Spectrogram
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Figure 2.4: Example of a mel spectrogram - y-axis: frequency, x-axis time, colour:
decibel. Note the change in frequency scale on the y-axis. Reproduced from [92]

As human perception of sound is concentrated within a narrow range of frequencies
(e.g. higher sensitivity to lower frequencies compared to higher frequencies), the
Mel Scale was developed to more accurately align frequency representation to hu-
man perception [93]. Converting a spectrogram to a mel spectrogram results in a
spectrogram which emphasises perceptually relevant features of our target domain
(speech) (an example can be seen in Figure 2.4). Conversion to the (log-scaled) mel
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spectrogram from a spectrogram can also be expressed mathematically [93]:

f
= 2595 -1 14+ —=— 2.10
m = 2595 - log, (1 + 700) (2.10)

Generating spectrograms through image generation essentially provides the ability
to generate audio by converting these images through downstream audio processing.
This leads us to Riffusion, an application which showcases the possibility of fine-
tuning SD to generate these pictorial representations.

2.3.2 Riffusion: generating music spectrograms with Stable Dif-
fusion

Figure 2.5: Spectrograms generated with Riffusion using text prompts. Left:‘funk
bassline with a jazzy saxophone solo’, Right:‘rock and roll electric guitar solo’[23]

Riffusion [23] uses a fine-tuned Stable Diffusion (SD) model to generate spectro-
grams of music (which are then converted to audio using STFT). This model is tuned
on images of spectrograms paired with corresponding captions and is the first no-
table example of using SD to generate audio as a spectrogram and subsequently,
using SD for text-guided audio generation. This provides evidence for the feasibility
of using a diffusion model - which is pre-trained on images - as an effective TTA
system.

Riffusion is compatible with SD features, with image conditioning, in-painting, nega-
tive prompts and interpolation fully functional. This allows the user to condition the
generation of new sound with an existing spectrogram while preserving the existing
audio’s structure. An example of this is interpolating a ‘rock and roll electric guitar
solo’ to an ‘acoustic folk fiddle solo’ resulting in a change of style, while preserving
the melody of the original music clip. Successful implementation of SD for non-
music audio domains should also provide working functionality of these features.
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The spectrograms generated by Riffusion do not provide information about phase
(only magnitude); the phase for these spectrogram images are approximated using
an additional algorithm (Griffin-Lim) [46] which iteratively estimates phase infor-
mation using a spectogram’s magnitude. This implies any audio spectrograms gener-
ated by our research would also need to consider the need for phase reconstruction.
Other explored methods of phase reconstruction range from ML-based approaches
(e.g. using deep neural networks[94]) to expansions on classical techniques (e.g.
improvements on Griffin-Lim and manipulations of STFT) [95, 96, 97]. Application
of different phase reconstruction techniques may result in improved fidelity of con-
verted generated audio spectrograms and could be considered as a potential hyper-
parameter to tune. Improper phase reconstruction can result in low-quality audios
with distortion and artifacts.

Unfortunately, training code and information for Riffusion is unavailable, which re-
sults in a necessity to explore methods of fine-tuning stable diffusion.®

2.4 Fine-tuning methodologies

Since their inception, multiple techniques have emerged for fine-tuning LDMs to
generate new concepts, some of which require as few as 3-5 images [98, 26].

Introduced in 2022, Textual Inversion is an approach [98] which allows SD to be
fine-tuned with a minimal set of images (3-5) to generate novel images or subjects.
This method fine-tunes the text encoder of an LDM to map a new text prompt to its
most suitable embedding. This research also finds that a single word embedding is
sufficient to learn unique and varied concepts. Examples of how learned concepts
are composed in this fine-tuned model can be seen in Figure B.1.

DreamBooth [26] offers a similar benefit to Textual Inversion, enabling SD to gener-
ate new concepts - similarly using only 3-5 input images. DreamBooth differs from
textual inversion by focusing on tuning the entire LDM - rather than the text encoder
solely. DreamBooth boasts improved prompt accuracy and image fidelity over tex-
tual inversion in certain contexts. An overview of this fine-tuning approach can be
seen in Figure B.2.

A third approach of fine-tuning is LoRA [25] - or Low-Rank Adaptation of Large
Language Models (LLMs) - a methodology created to fine-tune LLMs with billions
of parameters (e.g. ChatGPT-3). An adaptation of this methodology for LDMs [99]
provides faster training than previous approaches (e.g. DreamBooth), lower com-
pute requirements (enabling fine-tuning with a single 2080 Ti) and much smaller
trained weights - enabling increased ease of model sharing. Visual depictions of
these strategies can be found in Appendix B

®The authors of this software were contacted with requests for training clarifications but did not
respond.
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These three methodologies each increase the accessibility of SD fine-tuning, reduc-
ing training set size and compute requirements. Colossal-Al [100] is an open-source
package of tools enabling further improvements in efficiency, reducing training mem-
ory consumption by ‘up to 5.6x’ and hardware cost by ‘up to 46x’ (from A100 to
RTX 3060). Hugging Face also provide functionality and support for these train-
ing paradigms as part of their Diffusers library” [24]. These resources present good
feasibility for this research to fine-tune SD on limited project resources - mirroring
similar compute resources of average consumers.

2.5 Cross-domain transfer learning

Stable Diffusion models are primarily pre-trained on image data for the purpose of
image generation. However, emerging evidence suggests that cross-domain transfer
learning is effective. In this approach, models pre-trained in one domain, such as
image processing, can be efficiently adapted for other domains, like audio, with
comparatively minimal fine-tuning. This method circumvents the need for extensive
and costly domain-specific training by leveraging frozen pre-trained models, even
those initially trained for different domains.

Recent research [28] has explored the use of pre-trained Vision Transformers (ViTs)
for audio-visual tasks. These studies inject trainable parameters into every layer of
a frozen ViT network and have found that ViTs can generalize to audio-visual data
without requiring any audio-specific pre-training. Previous work in cross-domain
transfer learning has primarily focused on language models [101, 102, 103, 104] or
on more closely related domains (such as image to video) [105, 106, 103].

The current landscape of cross-domain research sets the stage for this study, which
will explore the potential for efficiently adapting image-centric Stable Diffusion mod-
els for audio generation. This would contribute novel insights into the adaptability
of diffusion models across different domains and modalities.

’This is a library containing pre-trained diffusion models with tools to enable custom training.
Training overview detailed here: https://huggingface.co/docs/diffusers/training/overview
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This research focuses on exploring the efficacy of fine-tuning a pre-trained, open-
source Latent Diffusion Model (LDM) to generate spectrograms that can be con-
verted to usable audio. A successful demonstration of generating usable audio via

this method achieves two main objectives:

* It showcases that Stable Diffusion (SD), even when pre-trained with vast
amounts of non-spectrogram data, can be feasibly adapted to produce quality

samples from entirely different domains.

* It paves the way for leveraging a variety of SD-specific tools and techniques
for the audio domain, broadening the horizons of SD applications for audio

research and development.

To this end, we present Bootstrapping Stable Diffusion for Audio Synthesis, a first
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investigation into whether a pre-trained diffusion model can be successfully applied
cross-domains for non-music audio generation.

3.1 Stable Diffusion 1.5
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Figure 3.1: Stable Diffusion architecture [1]

SD is an LDM designed for image generation, equipped with functionality to utilise
various prompt modalities for generation guidance. This model works by first taking
multiple ‘diffusion steps’ in latent space, which involves iteratively adding noise to
a sample z to obtain a noised sample z;. This sample is then passed through a
U-Net, while providing conditioning (such as text, or other images) at each level
of the U-Net through cross-attention layers. Stable Diffusion v1.5 is a checkpoint
of SD which is trained for almost 2 million steps on over 2 billion image-text pairs
from the LAION-5B dataset [85]. A brief overview of the model components are as
follows [1, 1071]:

A Variational Autoencoder [82] is used to encode (¢) and decode (D) images
between pixel and latent space. A relative downsampling factor of 8 is used,
and images of shape HxWzx3 are mapped to latents of shape H/fzW/fx4
where f is this downsampling factor (8).

A CLIP model (ViT-L/14) [78] is used as the text encoder (75) to convert input
guidance (e.g. text, images) into injectable embeddings.

A U-Net [55] is used as the model backbone ¢, for the denoising process.
Outputs of the text encoder are fed into the U-Net via crossattention (Q, K, V).

The loss is a reconstructive objective between the noise added to the latent,
and prediction made by the U-Net. We use the mean-squared error (MSE) of
the difference between our denoised outputs and the ground truth. This can be
interpreted as how well our model can denoise corruptions introduced during
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the diffusion process.

Although SD2.0 has been recently released, we elected to use SD1.5 for this re-
search for a couple of reasons. The first of these reasons is to ensure parity with
Riffusion [23]. Riffusion uses a stock SD1.5 model with no modifications, which
was fine-tuned with images of spectrograms paired with text. As Riffusion success-
fully generates spectrograms of music, choosing SD1.5 for this research is a sensible
starting point for investigating whether SD can be fine-tuned for non-music spectro-
grams. We also only similarly generate 512 x 512 spectrograms, removing the need
for models capable of producing larger dimensions - such as SD0.9 and SD2.0

Secondly, memory and compute requirements are heavily considered for this re-
search - as we had access to mainly consumer-level GPUs (e.g. 1080 Ti, 2080 Ti,
3080) with average VRAM amounts of 11GB. Components of this methodology were
chosen to ensure effective fine-tuning with these restrictions, and SD1.5 was con-
firmed to be fine-tunable with our current VRAM restrictions using multiple existing
training scripts (which provide methods to further reduce memory overhead [24]).

3.2 Dataset

The speech domain was initially targeted for this research, but focus quickly shifted
to general (non-speech) audio effect generation. As the inference outputs of SD have
a constant resolution (in this case 512 x 512 pixels), generating sentences of varying
size would have introduced additional complication. Constraining the training data,
as well as the inference output length, to a constant length (10 seconds) allows this
research to focus on the effect of fine-tuning SD on spectrogram generation. Speech
has much more variability in length in order to be legible - for example, a sentence
of one word would require much less time (or ‘space’ in the spectrogram) compared
to a longer sentence. Natural and urban audio effects can have variability within a
predefined range of time and still be legible and useful. The data described in this
section were therefore selected for the goal of non-speech audio generation.

3.2.1 Description

Text-to-audio (TTA) models such as AudioLDM [31] and TANGO [32] used a num-
ber of datasets for their training - including AudioSet (AS) [30] and AudioCaps
(AC) [29]. AS is a dataset containing over 2M human-annotated 10-second video
clips collected from YouTube and is one of the largest accessible audio datasets -
containing 527 classes and almost 6,000 hours of audio. AC is a dataset contain-
ing human-written text pairs describing audio events in sound; this audio is sourced
from AS and consists of around 46,000 audio clips. For both AS and AC - as this data
is sourced from YouTube - the quality can also not be assured to be standardised
across audio clips.

AS contains a number of urban and natural audio classes, such as animal sounds,
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instruments, vehicles & tools. The primary objective of our research dataset was to
provide a set of distinct classes to convert to spectrogram for our SD model to be
fine-tuned with. AS is extensively used for downstream tasks such as audio gener-
ation [31]m audio classification [34, 35, 36], audio tagging [35] and audio source
separation [37].

AC was formed by using audio sourced from AS but providing each sample with a
natural text-description. Examples of descriptions include “A motor vehicle engine
is running, a decelerating buzzing occurs, mechanical whines occur, and the mo-
tor vehicle engine accelerates” & “A frog chirps and other frogs and crickets chirp
in the background”. Although AC is a much smaller dataset than AS, the higher
fidelity and variety in text descriptions provide a greater text representation of au-
dio, enabling our model to learn more granular descriptions of audio - which should
provide greater capability for text-guided audio generation at inference time.

AS exhibits significant label bias, as evidenced by a difference of 660,282 between
the average count of its top three most common classes and its three least common
ones [29]. Data ontology for AC can be found in Appendix A.

3.2.2 Collection
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Figure 3.2: Pre-processing steps undertaken for dataset creation

The AS and AC datasets both provide metadata on where each audioclip is sourced
from (via YouTube URL), as well as the duration over which this audioclip takes
place - this allows users to download the datasets directly. With this metadata, these
datasets were scraped using Youtube-DL [108] and FFmpeg [109] - the former a
python package enabling direct download of YouTube videos, and the latter a frame-
work converting 10-second video clips to audio. Using these two software packages
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in conjunction provides a dataset of .wav files corresponding to the information pro-
vided in these metadata files.

The total downloaded is less than the numbers quoted by the dataset creators, due
to YouTube videos becoming unavailable over time - either due to copyright take-
downs, privacy settings or removals otherwise. As AudioCaps is a much smaller
dataset than AudioSet, we elected to download the entire dataset however - due to
aforementioned availability problems - this resulted in a dataset of 25,063 samples
out of the quoted approximate 46,000 value.

3.2.3 Pre-processing

A number of processing steps are then applied to the audio data to prepare them for
our experiments. As the data is downloaded from YouTube, the characteristics of the
audio cannot be assumed to be consistent across the dataset.

Resampling

The first stage is to resample the data to ensure this is consistent across samples. The
sample rate determines the highest frequency which can be produced. Following the
Nyquist-Shannon sampling theorem [110], we pick a sampling rate which is greater
than twice the expected highest frequency in the audio signal to avoid distortion.
A sample rate of 44.1kHz is a common sampling frequency used in (the music)
industry, chosen mostly in part to be greater than twice the highest human-audible
frequency of 20kHz [111]. Our data is initially resampled to 44.1kHz to ensure
consistency across the dataset as well as ensure all audible frequencies are captured
without distortion.

Duration normalisation

After resampling, the data length is then standardised to ensure each clip is 10 sec-
onds in length. The download scripts specify 10 seconds to be downloaded so this
stage serves as additional robustness for events where clips may have been down-
loaded incorrectly. Clips that are too long are trimmed to 10 seconds, while those
that are too short are padded with zeroes (or silence) at the end.

Peak normalisation

To achieve further consistency across the training data, the volume/amplitudes of
this data are normalised through peak-normalisation. This scraped data has incon-
sistent volumes between clips and we want to avoid the model becoming sensitive
to volume differences, rather than inherent characteristics of the audio. Peak nor-
malisation operates by dividing each audio signal by its maximum absolute value.
Consequently, the loudest peak in any audio signal will be scaled to exactly 1 (or
-1 for negative peaks), with all other samples in the clip being proportionally scaled
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based on this peak. This method of normalisation does not alter the audio’s dy-
namics and instead adjusts the overall level of each file. This ensures a uniform
amplitude across the dataset and helps prevent clipping — a type of distortion that
occurs when the signal’s amplitude surpasses its representable limit.

Waveform to spectrogram conversion

Once the audio data is processed, these are then converted to spectrograms using
code provided by Riffusion [23]. The conversion to spectrogram uses short-time
Fourier transform (STFT) within functions provided by PyTorch. STFT parameters
can affect the final spectrogram image, especially its resolution - appropriate param-
eters must be selected to ensure the images generated are of a resolution which can
be interpreted by the model, in this case 512x512.

Within STFT, the hop length determines the number of samples between successive
frames. Adjusting this can result in adjustments to the width of the spectrogram -
with larger spectrograms resulting from shorter hop lengths and subsequent better
time resolution from more frequent samples. Hop length is calculated as such:

hoplength = stepsize(ms) /1000 x samplerate (3.1)

Fixing the sample rate at 44.1kHz, the step size is adjusted to achieve a width of
512 pixels. These spectrograms are also scaled into mel-spectrograms. For this scal-
ing, we set the number of frequencies to 512, with the min and maximum frequen-
cies bounded between 20Hz and 20kHz - the range of human hearing. This scales
the height dimension of our spectrograms to 512 - resulting in images of 512x512.
An additional horizontal cropping stage is added to remove any width arising from
rounding errors in the hop length calculation - this usually results in the removal of
one column of pixels at most.

Spectrogram to waveform conversion

Converting spectrograms back into waveforms involves applying the Griffin-Lim al-
gorithm. Waveforms are first inverse mel-scaled using the parameters used to gen-
erate the spectrograms before applying Griffin-Lim to generate a waveform. Both
Griffin-Lim and mel scaling are lossy operations, resulting in a loss of fidelity and
information when converting mel-spectrograms to waveforms and vice versa. Spec-
trograms are converted back as a further robustness check to evaluate the extent
of this loss, with original training audio logged alongside converted audio to ensure
this loss is acceptable. Lastly, this conversion operation is also employed to transform
the model outputs into audible formats.

3.2.4 Dataset creation

After these preprocessing stages, we now have a collection of 10-second, 44.1kHz
and peak normalised waveforms - along with a corresponding set of spectrograms
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created from these waveforms. This research used HuggingFace’s datasets package,
which enables the creation of datasets from folders containing corresponding meta-
data files.

Metadata and caption generation

AC and AS have pre-defined splits for training, validation and testing. To create the
dataset, we separate this data into corresponding train/test/val folders and then cre-
ate metadata files, which contain the spectrogram image, a caption and the audiofile
(for logging purposes). For AS, the captions follow the pattern of “A spectrogram of
a class” where class is the specific audio class (e.g. snare drum, bird song). AC
provides captions, so a signifier of “A spectrogram of” is added to the start of every
caption. This was done to ensure our model could generate spectrograms by fine-
tuning with these signifiers, and by providing a signifier to be added before prompts
at inference time to ensure we generate our target domain (spectrograms).

Tokenisation

After preparing the captions and the dataset, they are subjected to a tokenisation
process. This step employs a CLIP tokeniser to transform the captions into text em-
beddings tailored for a CLIP text encoder used in subsequent stages. This transfor-
mation breaks the captions into individual tokens and maps them to an intermediate
representation, which the model’s text encoder can process more efficiently.

Loading

After these pre-processing steps, the training and validation data is loaded into the
model for training. These are loaded in pre-specified batch sizes - with the order
shuffled for training data and not shuffled for validation data. The training data
is shuffled to avoid any bias inherent in the data collection (such as clumping of
classes) and minimise any bias from the model memorising specific sequences or
ordering of the data. The validation data is not shuffled to ensure predictability
when evaluating the model’s performance on this unseen data - this also enables
ease of comparison between different models (or the same model at different stages
of training).

3.3 Fine-tuning

Fine-tuning refers to performing additional training on a pre-trained model to ac-
complish a specific task. Using a task-focused dataset allows us to leverage the
power of large-scale pre-trained models and adapt them to new domains and tasks.
This section will detail our fine-tuning technique and methodology.
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3.3.1 Low-Rank Adaptation (LoRA)

We chose to fine-tune our model using LoRA or Low-Rank Adaptation of Large Lan-
guage Models (LLMS) [25]. This technique originally developed for LLMs was first
adapted for SD in 2023 [99]. Fine-tuning a model with a large number of parame-
ters (such as GPT-3 with 175B parameters) is prohibitively computationally expen-
sive. LoRA significantly reduces computational cost by freezing pre-trained model
weights, and then only fine-tuning on newly injected weight matrices added to ex-
isting weights. For SD, these are injected in the cross-attention layers; this mirrors
LoRA’s original focus on fine-tuning LLM Transformer attention blocks. This reduces
the number of parameters needed to fine-tune the overall model, dramatically re-
ducing memory overheads.

LoRA also has the benefit of avoiding catastrophic forgetting, a problem where exist-
ing pre-trained weights within a network may be overwritten, resulting in a loss of
prior generative power. As LoRA preserves the original SD model weights, it should
ensure that existing SD capability prior to fine-tuning is unaffected. Diagram illus-
trating LoRA can be found in Appendix B

Existing training scripts and packages [24] suggest that LoRA enables fine-tuning on
GPUs with VRAM as low as 11GB - whereas other popular fine-tuning methodologies
such as Dreambooth [26] potentially necessitate upwards of 24GB of VRAM [112].

LoRA’s benefits are therefore:
* Prior existence of fine-tuning scripts
* Reduced memory requirements

* Compact fine-tuning weights compared to non-LoRA fine-tuned weights. This
increases the ease of both sharing fine-tuned model weights and using existing
SD tools.

These benefits - in light of project compute and timeline restrictions - resulted in
LoRA being chosen as our fine-tuning methodology.

3.3.2 Fine-tuning procedure

We chose to adopt an existing fine-tuning script’ which implements LoRA fine-tuning
using a weighting strategy known as Min-SNR [113]. Min-SNR promises 3.4x faster
convergence speeds over previous strategies by using signal-to-noise ratios to bal-
ance conflicting optimisation directions between timesteps (which was found to be
responsible for previously slow convergence speeds for diffusion models).

We conduct fine-tuning and log progress using a number of quantitative and quali-
tative metrics to evaluate the efficacy of our training:

IThis script can be found in the Diffusers library [24]
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* Average mean-squared error (MSE) loss for training and validation sets.

* A randomly selected training and validation input sample is logged per epoch
to spot-check correct data-loading. We log spectrograms, original audio as
well as these spectrograms converted to audio to evaluate the robustness of
our spec-to-wav conversion.

* For each epoch, we run inference to generate a number of spectrograms using
pre-set validation prompts. We log generated spectrograms alongside their
conversions to audio.

These outputs allow us to evaluate changes in loss curves, as well as qualitatively
evaluate the quality of generated samples before further evaluation.

Inference outputs can provide an approximate indication of how our model is per-
forming. For each inference step, we provide a number of validation prompts which
consist of prompts present in the validation set. We also provide simpler prompts to
evaluate how the model may generalise to prompts with similar textual embeddings
without replicating the entire validation prompt exactly. For each prompt, we gen-
erate four images using a generator which is seeded with a consistent seed across
experiments. Examples of prompts (each prefixed with “a spectrogram of” are:

* “A dog barking”
* “A man laughing”

* “A horn honking followed by a man laughing then talking and plastic clanking
on a hard surface”

* “Music plays and someone speaks before gunfire and an explosion occurs”

Perceptual evaluation of inference outputs focuses on the quality of the audio, and
its success at matching the inference prompts. These early evaluation stages allow
us to perform quick initial tuning of hyperparameters before evaluating our best-
performing models using a quantitative evaluation framework to produce FAD and
IS scores - this is detailed in Section 5.1.

3.4 Hyperparameters

A primary objective of this fine-tuning work involves the selection of appropriate
hyperparameter values to optimise our model’s performance - optimisation of these
parameters will be performed by evaluating the results of different experiment con-
figurations. The parameters for this model are the following:

* Learning rate - Our model employs an Adam-based optimiser. This algorithm
actively adjusts the effective learning rate during training based on its estima-
tions of the mean and variance of each parameter [114]. Specifically, we use
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AdamW, an extension of Adam with added weight decay. The learning rate we
select serves as the base rate for the Adam optimiser. This rate influences the
optimiser’s estimations of the mean and variance of each parameter and sets
the general scale for step sizes during gradient descent. It defines the inten-
sity of these updates. An excessively high learning rate can lead to divergence
(due to overly large gradient updates), while an overly low rate might cause
the training to get trapped in local minima.

Adam parameters - The optimiser behaviour can be controlled further by ad-
justing three parameters 3; [, and the weight decay.

— By represents the moving average of the gradients (the mean), adjusting
this parameter determines the exponential decay rate of past gradients
being considered by the optimiser when adjusting its steps. A ; closer
to 1 results in a longer memory, whereas values closer to zero result in
a shorter memory. Setting this too high might lead to slow convergence,
whereas values too low might lead to unstable optimisation. The original
Adam paper sets this value to 0.9 as default [114].

- B, represents the moving average of past squared gradients (the variance),
adjusting this parameter determines the exponential decay rate of past
squared gradients being considered by the optimiser when adjusting its
steps. Similar to f;, setting this too high might lead to slow convergence,
whereas values too low might lead to unstable optimisation. The original
Adam paper sets this value to 0.999 as default [114].

— Weight decay is a form of regularisation which discourages large weights
by applying a decay penalty to weights during optimisation. The form
of weight decay used in our model involves adding this cost directly to
the weights to avoid conflict with Adam’s adaptive learning rate (rather
than during gradient calculation). The purpose of this regularisation is to
prevent overfitting by promoting simpler models with smaller weights -
setting a weight decay too low may lead to overfitting, whereas a weight
decay too high may lead to underfitting and degraded performance from
overly reduced weights.

e Warm-up steps - Warm-up is a technique which involves gradually increasing

the learning rate to the specified parameter value over a number of warm-up
steps. These steps - along with our optimiser - help to stabilise our training, by
avoiding aggressive weight updates at the beginning of training caused by im-
mediately using our maximum learning rate. Starting with a smaller learning
rate allows our model to settle into a more stable region of the loss landscape
before larger weight updates. If our learning rate is too high at the start of
training, weights could be updated too aggressively, leading to either diver-
gence, or oscillations in our loss. For example, SD1.5 training used 10,000
warm-up steps but on a significantly larger dataset than AS or AC - the level of
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warm-up steps will therefore be tuned over our experiments.

* Epochs - It is important to ensure training periods are long enough to ensure
that models have converged. Using validation loss as a guide, we can halt
training once the validation loss no longer shows signs of further decreasing
(by halting training after a number of static periods, or periods of increas-
ing loss). Early experiments here allows us to set an appropriate number of
epochs for further hyperparameter tuning, or for full fine-tuning on our set of
optimised parameters.

* Batch size - Batch size determines the number of data samples fed into our
fine-tuning loop at each training step. Selecting the optimal batch size in-
volves striking a balance between memory/time requirements and training sta-
bility/convergence. Smaller batches demand less memory but result in longer
training durations. They might also lead to noisier gradient updates, which
can act as implicit regularisation and help the model avoid local minima. Con-
versely, larger batches can yield more accurate gradient estimations and stable
convergence, but with potential overfitting. The noise in smaller batches arises
from the increased variability between them, causing potentially erratic gradi-
ent updates.

Batching methods range from stochastic gradient descent (a single sample per
iteration), to mini-batching (a subset of data per iteration), to batch gradi-
ent descent (using the entire dataset per iteration). Generally, smaller batches
might reduce memory overhead while providing a regularisation effect but
could lead to extended convergence times due to erratic updates. Larger
batches might offer more stable convergence and improved gradient accuracy
but could result in memory strain and miss out on the regularisation effects of
smaller batches.

- Gradient accumulation is a technique which can enable training on larger
batch sizes with smaller memory requirements. This parameter sets the
number of batches which undergo a forward and backward pass before
weights are updated. This means that with a batch size of 1 and a gradi-
ent accumulation of 4, our model will process each sample and add these
updates to a gradient buffer before updating the weights on the fourth
iteration. This results in lower memory requirements, but less overall
weight updates.
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In this experimental research, our procedure for fine-tuning Stable Diffusion (SD)
follows an iterative procedure where we add complexity to our experiments with the
aim of achieving model configurations with usable audio generation. This chapter

details our experiments, alongside intermediate results and conclusions.

Similar to existing literature, full evaluation will require the generation of metrics
- such as Inception (IS) and FID (Fréchet inception distance) scores - but as these
scores add additional computational overhead we elect to only use these metrics to

evaluate our final tuned model configurations.

An overview of our experiment phases are as follows, this section will detail our

empirical experiments in chronological order:

* Testing the feasibility of LoRA (Low-rank Adaptation) fine-tuning with a
generic dataset: this phase has the goal of confirming that our LoRA training

script and hardware are sufficient for fine-tuning SD.
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* Fine-tuning using chosen natural audio-classes from AudioSet: we start
with a single class before scaling up to include more classes to determine early
feasibility of spectrogram generation.

* Fine-tuning with subset of AudioCaps: we then scale up our experiments
to a subset of AudioCaps, a dataset with more descriptive prompts similar to
prompts used for downstream generation.

* Prompt and data adjustment: we then test the necessity of needing to include
a textual signifier in our data and prompts to evaluate the effectiveness of our
fine-tuning with it.

* Scaling experiments to include full AudioCaps dataset: we then scale our
experiments, training with our full dataset.

Unless otherwise stated, our experiment configuration uses an AdamW optimiser
(with 3, at 0.9, 3, at 0.999, ¢ at 1le~® and weight decay of 0.01), a cosine warm-up
scheduler, a batch size of 1 and 4 gradient accumulation steps.

4.1 Testing LoRA with Pokémon BLIP caption dataset

The initial step of our experimental process focuses on using LoRA to fine-tune using
a pre-existing dataset evidenced to work. The Pokémon BLIP captions dataset [115]
is a dataset of 833 images (of fictional creatures from the popular media franchise
Pokémon) with corresponding natural text descriptions (examples in . The objective
of this fine-tuning is to quickly test our pre-existing LoRA fine-tuning script on our
available hardware. This dataset is given as an example within the Hugging Face
Diffusers package (where we acquired our fine-tuning script) due to its use as a
SD fine-tuning tutorial dataset elsewhere [116]. Its prior use as an SD fine-tuning
tutorial dataset emphasises its appropriateness for this preliminary test.

Following default parameters from Hugging Face’s Diffusers documentation [24], we
fine-tune SD1.5 for 18 epochs, at learning rate 0.0001 (1e~*). Using the prompt “a
pokemon with blue eyes”, we can see the effect of LoRA fine-tuning over the train-
ing process in Figure D.2. From this initial training run, we confirm that our LoRA
fine-tuning script can be run on our available hardware, and that there is some
(qualitative) evidence of our model learning features from our example dataset.
With these confirmations, we moved on to our primary research objective of spec-
trograms. Generation outputs and data sample examples can be found in Appendix
D.
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4.2 Fine-tuning with selected AudioSet classes

4.2.1 Bird song

The next phase of experiments involves fine-tuning our model on a subset of Au-
dioSet (AS). We start with a simple configuration of data and parameters, before
scaling to include more classes and finer hyperparameter tuning in later phases.

The first set of experiments focuses on fine-tuning using the ‘Bird song’ class of sam-
ples from AS. This subset consisted of 97 samples of various bird song and vocalisa-
tions, passed through our pre-processing pipeline detailed in section 3.2.3, each with
a corresponding caption of “a spectrogram of bird song”. For these experiments, our
validation set is formed by randomly separating 20% of samples (15 samples) from
our training set. Figure 4.1 shows many spectrograms lacking higher-end frequen-
cies, resulting in blank spaces at the top of the image.

Sample 3 Sample 4

Figure 4.1: Four spectrogram samples from AS bird-song training dataset

We initially ran an experiment for 15,000 steps (155 epochs) at learning rate le™,
mirroring our configuration for our testing on the Pokémon BLIP dataset. During
these experiments, we generated four inference images at every epoch of training,
as well as logged training and validation loss per epoch.
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As seen in Figure 4.2, our training and validation loss curves are erratic, potentially
due to a combination of the complexity of our model, noise in the training data,
fewer gradient updates from gradient accumulation and our adaptive learning rates
from our AdamW optimiser. Additionally, the training process of diffusion models
involve denoising samples which have had gaussian noise applied to them; this noise
inherent in the training process may also be contributing to noise present in the loss
curves. Due to these reasons, our curves will be smoothed to control for this noise -
with exponentially moving average using a decay rate of 0.99 - to illustrate our loss
trends.
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Figure 4.2: Unsmoothed loss curves from fine-tuning with AS bird-song - LR le~* (97
training samples).
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Figure 4.3: Smoothed loss curves from fine-tuning with AS bird-song - LR 1le™* (97
training samples). A faint underlay of the unsmoothed curve can be seen in the back-
ground.

As seen from our smoothed curves, our training and validation losses fall to a local
minimum at epoch 3, then increase before slowly decreasing over the rest of the
training; looking at the unsmoothed curve, we also reach a global minimum in our
validation loss at the end of training.

Our loss metric is MSE, which evaluates pixel differences from our inference data and
our training/validation datasets. This metric can be used to evaluate how our model
is learning but can not necessarily be assumed to have a direct link with the quality of
our final audio output due to the nature of spectrograms. Spectrograms are highly
sensitive to variations and two spectrograms with low MSE may sound different
due to this. This is because MSE treats all differences equally, which contradicts
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with human non-linear perception of hearing, with certain frequencies being more
perceptual than other frequencies. We include loss curves in a holistic evaluation
of performance, with greater weight given to subjective assessment of audio quality.
As previously mentioned, quantitative metrics will be generated after our empirical
experiments.

Converting these spectrograms to waveform produces audio which contains some
evidence of replicating bird song (such as non-rhythmic chirps) but is interspersed
with loud sounds of distortion and a phaser effect (with fast shifts in phase over time
creating a warbling sound). While this early experiment is promising, the results still
contain significant levels of non-domain and non-natural sound - which makes this
audio unsuitable to be used as natural sounding bird-song. Inference outputs can be
found in Appendix E.

We also experiment with reducing the learning rate to le~®, which results in similar
quality of generated audio. Despite these results, these experiments illustrate SD’s
capability to learn spectrograms through fine-tuning - particular evidence of this can
be seen from our generated spectrograms, showing a similar higher-frequency gap
which was frequently present in our training data.

This early set of experiments demonstrates that:

* Loss curves can be used to evaluate how our model is learning to generate
spectrograms over time, but not necessarily used to evaluate the quality of our
final converted waveforms.

* Our model is capable of producing audio which contains some features of our
target class.

4.2.2 Expanding fine-tuning to five classes

As seen in Section 4.1, the example dataset we use consisted of multiple images, each
with a separate prompt. The structure of our AS dataset differs from the example
dataset in that it contains multiple images sharing the prompt A spectrogram of bird
song”, as opposed to each image having its unique prompt. To remove the possibility
of our limited prompt causing a failure to fully learn, we expand our experiments
to five classes: Train horn, Snare drum, Cheering, Acoustic guitar, Dog bark. We
selected five classes with distinct and recognisable characteristics to aid perceptual
evaluation.

A potential issue with our bird-song experiments may arise from data quality - our
small dataset consisted of vocalisations from different birds which may have resulted
in our model failing to learn any common features across our data. The goal of this
phase in our experiments was to expand our training data and eliminate potential bi-
ases associated with using a single class label. Data examples and inference outputs
can be found in Appendix E.
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Class Samples % of five-class dataset
Dog bark 55 18.1%
Cheering 59 19.4%
Acoustic guitar 51 16.8%

Snare drum 84 27.6%

Train horn 55 18.1%

Total 304

Table 4.1: Sample size of classes in our five-class AS dataset.

This five-class dataset contained 304 samples, with a train/test/val split of 80/10/10.
For this dataset, we ran 7 experiments, each with different configurations of learn-
ing rates and epochs. At the end of every epoch we generated an image using the
prompt “a spectrogram of [class name]”. For the first three experiments, we trained
for 15,000 steps (61 epochs), with 1,000 warm-up steps at three learning rates
le73, le~%, 1e75.

The outputs produced by our inference prompts vary in quality. Our model had
some success at replicating dog barks and cheering, but struggled to replicate train
horns, acoustic guitars and snare drums. For barks and cheering, we found learning
rates le~3 and 1e™* produce the highest quality audio which could be perceptually
determined as the target class. Despite the model’s failure to reproduce these latter
three classes with these parameters, some features of these classes are present, such
as rhythm within snare drum audio. Regardless, most inference output contained
noticeable elements of distortion and warbling.

Training Loss Validation Loss
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Figure 4.4: Training and validation smoothed MSE loss curves for AS 5-class dataset at
3 different learning rates.

Inspecting our (smoothed) loss curves for these experiments, we can see a fall in our
training loss for all three learning rate experiments, followed by a slight increase
before settling at steady levels from epoch 15 onwards. These training loss curves
in isolation are promising, but our validation loss curves show a sudden rise from
a global minimum at epoch 1. This discrepancy between our loss metrics and spec-
trogram outputs is evident, especially when, at our minimum validation loss, our
outputs significantly deviate from our target of producing usable spectrograms.
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Validation Loss
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Figure 4.5: Unsmoothed validation loss for AS 5-class dataset at 3 different learning
rates.

From these three experiments, learning rate le~3 achieved the absolute lowest loss
values between the three experiments. However, this behaviour may also be a re-
sult of a potentially unrepresentative validation set, with only 10 % of our limited
subset used for validation. Alternatively, this validation curve behaviour may also
arise from this smoothing - inspecting our unsmoothed curve shows increasingly
volatile losses (with differences between epochs increasing); these experiments may
therefore show potential signs of overfitting on our training set.

We also additionally tested learning rates le=5, 1le=® for 33 % more epochs (81
epochs) to assess whether our experiments at these lower learning rates potentially
did not have enough training time to converge (Figure 4.6). Our training losses for
these two experiments are smoothed to reach similarly low levels to 1e~3; the valida-
tion losses start high, before generally trending downwards to reach a similar level
to 1e~3 (although seemingly remaining above).

Training Loss Validation Loss
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Figure 4.6: Training and validation smoothed MSE loss curves for AS 5-class dataset at
5 different learning rates.

When we examine the unsmoothed validation curve (Figure 4.7), we can see these
smaller learning rates achieve lower absolute validation loss values - but with in-
creased volatility across the curves (i.e. higher maximums and lower minimums).
This shows that these lower learning rates may potentially result in more unstable
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training. This is further exemplified by our output audios being perceptually worse
than our higher learning rate experiments - resulting in increased distortion and
artifacts.
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Figure 4.7: Unsmoothed validation loss for AS 5-class dataset at 3 different learning
rates.

Our inference outputs for 16 show these artifacts, generating spectrograms which
are quite distinct from our training data - with visual distortions such as colour and
blurring (Figure 4.8). This may be a result of choosing a learning rate too low - and
our training potentially becoming stuck in a local minimum. Although we achieved
average lower validation losses, our generated audios have lower perceptual quality
- this may imply that stability of training (and loss curves) may also be a useful

metric to guide our further experiments.
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Figure 4.8: Selection of inference outputs from 1le~® demonstrating visual artifacts

Expanding our experiments to include these five classes shows us that:

* Our model is capable of producing some target sound classes after fine-tuning
whilst failing to generate others. This could potentially be due to data qual-
ity issues across classes (due to AS sampling data of varying quality from
YouTube).
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* Learning rates of le~3 and le™* are potentially promising starting points to

explore further learning rates from.

* Absolute loss values continue to be a potentially confusing metric to guide our
training - experiments with lowest achieved loss values do not generate higher
quality audio samples. Stability of training may instead be a useful metric of
how well our model can generate usable audio. However, our validation loss
calculation may be affected by a potentially unrepresentative validation set.

4.3 AudioCaps

Fine-tuning on AudioSet involved attaching a simple prompt of “a spectrogram of
[class]” to each sample in our dataset; we wanted to evaluate whether increasing
the detail of our text prompt would result in improved output. Prompting SD often
involves detailed natural language prompts which are tokenised using a CLIP text
encoder. The usage of detailed prompts at inference, as well as the usage of detailed
captions in our example dataset (used in Section 4.1) encouraged us to experiment
with fine-tuning on AudioCaps (AC). AC uses the same underlying data source as
AS, but instead provides detailed text descriptions of each sample. Previous audio
generative research have also trained on AC (sometimes exclusively [32]), which
motivated us further to begin experimenting with AC.

As an additional robustness check, we analyse the most common words across these
captions (after removing stop-words such as ‘and’ & ‘the’)! - this reveals a weighting
towards audio containing speech. Other natural descriptions include ‘wind blow’,
‘birds chirp’ and ‘dog bark’ (referred to as ‘bow-wow’ by AudioCaps). This bias
aligns with AC’s ontology (Figure A.1) which also presents speech as the most fre-
quent classes; however, this bias may also result in our fine-tuned model failing to
generalise to under-represented classes.

IList of stop-words used for filtering was obtained from Python’s Natural Language Toolkit pack-
age [117]
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Figure 4.9: Word cloud of most common single words and bigrams (concurrent pair of
words) in our AudioCaps dataset. Common stop-words are filtered from above.

4.3.1 Subset

We begin by training on a subset of AC, randomly sampling 20 % of our total avail-
able AC data. We choose this subset for computational efficiency, aiming to run
multiple shorter experiments before scaling up to our full dataset. Similar to our
AS experiments, we processed our data by adding “a spectrogram of” before each
caption. A total of 45 experiments were run on this subset with different parameter
configurations, to evaluate the impact each of these parameters would have - with
the aim of achieving high quality audio.

Throughout the experiments, we use a number of inference prompts randomly sam-
pled from the validation set - initially using (each prefixed with “a spectrogram of”):

* “An animal hissing followed by a man mumbling then a pig oinking while birds
chirp in the background”

* “Music plays and someone speaks before gunfire and an explosion occurs”

* “Someone is typing on a computer keyboard”
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23 epochs

We initially run three experiments, testing our learning rates used with our AS ex-
periments (excluding le=2 and 1e~%), training for 23 epochs with 20,000 warm-up
steps. From our smoothed training curves, le~2 appears to constantly have a lower
training loss than the other two rates while achieving a lower validation loss by the
end of training. However, the unsmoothed training loss curve illustrates that these
losses intersect, but with 1e~3 generally trending below the other two rates. Looking
at the validation curves, le~* and le~® do achieve a lower absolute loss value than
le~3 but has a higher absolute loss immediately before this drop - possibly alluding
to increased volatility over training. Unfortunately, all generated audio is completely
unrecognisable from any of the inference prompts - mostly producing distortions and
noise.

Training Loss Validation Loss

5 = le*-4 = le*-3 le*-6 = le*-4 =

__Step-e 0.13

Training Loss Validation Loss

er-5 — ler-4 — ler-3 Ter-6 — ler-4 — le-3

20k 40k 60k 80k 100k 20k 40k 60k 80k 100k

Unsmoothed

Figure 4.10: Training and validation MSE loss curves for AC subset at 3 different learn-
ing rates for 23 epochs and 20,000 warm-up steps.

Following these three experiments, we test learning rates 3e~ and 3e~* (rates ly-
ing between le™® and le~%). We adjust our warm-up values, lowering the former
experiment to 16,000 rather than 20,000. For the former, the training loss falls be-
fore increasing slightly to a (potentially) stable level; this is accompanied with a
validation loss with an almost inverse trend - implying potential overfitting.

For 3e~*, our validation loss falls initially, but then remains higher than initial loss
for the rest of training; training loss increases to a maximum before steadily falling
to meet the final loss value of 3e~3. This could potentially be a sign of overfitting
- but as this model does eventually reach the training loss of 3e~3, it could instead
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signify that training at this learning rate requires additional time for our model to
effectively learn. As with the previous three experiments, audio here is similarly
unusable.

Training Loss Validation Loss

30— 3e-4 3er-3 = 3er-4

Figure 4.11: Training and validation MSE loss curves for AC subset at 2 different learn-
ing rates for 23 epochs.

From these experiments we learn:

* Our experiments for learning rate 3e~* may have had insufficient time to con-
verge, with training loss continuing to fall. However, the validation curve does
show evidence of overfitting.

* We are unable to obtain audio anywhere close to usability - this is in contrast
with our AS experiments, where our model was capable of generating audio
matching the inference prompts when evaluated by perception. This may be
due to the significantly fewer epochs used for this set of experiments.

To rule out the possibility of training times being too short - especially for smaller
learning rates - we focused on increasing our number of epochs, whilst also further
investigating the effect of warm-up.

50 epochs

After these 23-epoch experiments, we then focus on increasing training time - rais-
ing our number of epochs to 50, while adjusting our warm-up steps and learning
rates. An overview of this next phase of experiments in tabular form can be found
in Appendix C.

For our first three 50 epoch experiments, we tested 3e~* and 3e~3 again, along with
le~* and le~3. Upon inspecting our loss curves, evidence of an exploding gradient
becomes apparent for 3¢~3. Inference outputs from this particular experiment also
visually demonstrate this, with corrupted colourful spectrograms that are far from
our target output (Figure 4.13).

From this set of experiments, we see it is possible for our fine-tuning to result in
loss divergence. This also provides evidence of MSE’s explanatory power in some
situations - as the inference outputs align with our expectations that this rapid in-
crease in training loss would cause. Our validation loss figures for 1le=* and 3e~*
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also trend below what we have previously seen - with our smoothed graphs mostly
occupying loss values between 0.125 and 0.129 (in contrast to earlier experiments
where smoothed validation loss rarely fell below 0.13).

Our inference outputs from these two experiments have also slightly improved, with
audible elements of bird song present in our first inference prompt, as well as some
features of keyboard typing in our third inference prompt. However, these mod-
els struggle with outputting audio matching all elements of these longer prompts -
failing to generate some aspects of the prompt (e.g. a pig oinking) and only gen-
erating parts of the prompt in some cases (e.g. birds chirp). This output is still an
improvement on our 23 epoch experiments however.

Training Loss Validation Loss
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MSE
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Figure 4.12: Training and validation smoothed MSE loss curves for AC subset at 4
different learning rates for 50 epochs and 16,000 warm-up steps.
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Figure 4.13: Inference outputs from 3e 3, 50 epochs and 16,000 warm-up steps demon-
strating evidence of exploding gradient.

To compare performance on our training data, we also add an additional inference
prompt: “a spectrogram of A horn honking followed by a man laughing then talking
and plastic clanking on a hard surface” - this prompt was randomly sampled from
our training set. This prompt enables us to identify how well our model is learning
on our training data, as well as how well it can be applied to our validation set in
comparison.

We then focus on tuning the number of warm-up steps across a number of learning
rates - testing a range of warm-up steps (30,000, 60,000, 32,000 and 28,000). Run-
ning three experiments at le~3 with different warm-up steps show a difference in
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our loss curves. Our experiment with 16,000 warm-up steps shows a spike in train-
ing loss at the start of training, accompanied by a fall in our validation curve which
then immediately increases to our initial validation loss; we also see a similar spike
in validation loss with 30,000 warm-up steps. Our experiment with 32,000 warm-up
steps results in a less volatile validation curve, but loss values on both curves is con-
sistently higher than our other two experiments. This may suggest that the number
of warm-up steps affects the stability of early training for the first few epochs.

he next set of experiments was designed to investigate the impact that warm-up
would have for 3e~3 due to our previous experiment with this rate resulting in ex-
ploding gradient. Increasing our warm-up steps should result in increased stability
of training, allowing our network more time to adapt its weights and biases with a
gradual (and less aggressive) learning rate. This allows for a more controlled ex-
ploration of the loss landscape, and potentially avoiding regions where the gradient
might explode.

Training Loss Validation Loss

Figure 4.14: Training and validation MSE loss curves for AC subset at 3¢~ for 50 epochs
and varying warm-up steps.

Looking at our loss curves for these three warm-up steps; we see that increasing the
number of warm-up steps has avoided the exploding gradient problem previously
encountered. This exploding gradient may therefore be a result of insufficient sta-
bilisation caused by a shorter warm-up period. 60,000 warm-up steps may also be
presenting signs of overfitting compared to 32,000 steps - with higher validation loss
and lower training loss values. From these results, we elected to focus on 32,000 as
an anchor for future experiments.

Testing these warm-up steps with 1e~* resulted in strictly higher training and vali-
dation loss curves and no increase in audio fidelity.

Our next set of experiments explored learning rates 5e~* & 7e™* at two warm-up
steps: 32,000, and a slightly lower value of 28,000. We chose 32,000 due to the
results of our 3¢~ experiments, as well as this lower value to test the sensitivity
of tuning our warm-up by a small amount. From our loss curves, our experiments
with 28,000 warm-up steps achieved lower validation and training loss compared
to 32,000. Additionally, inspection of our audio clips also demonstrated increased
fidelity in audio for these learning rates over previous experiments.
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Figure 4.15: Training and validation MSE loss curves for AC subset at 1e~* for 50 epochs
and varying warm-up steps.

Training Loss Validation Loss

5e*-4, 32k warm-up 5e*-4, 32k warm-up

—Step * - —Step-

50k 100k 150k 200k 250k 50k 100k 150k 200k 250k

Figure 4.16: Training and validation MSE loss curves for AC subset at 5¢~* and 7e~* for
50 epochs and at 28,000 and 32,000 warm-up steps.

From our set of 50 epoch experiments, we found:

* It is possible to experience exploding gradient when fine-tuning SD. Choosing
a learning rate too high with too few warm-up steps can lead to our model
generating increasingly unstable spectrograms filled with noise.

e Warm-up steps can affect our loss trends, sometimes resulting in trends with
one warm-up configuration strictly greater than another warm-up configura-
tion. Choosing too high of warm-up steps could potentially result in overfitting,
or worse validation loss.

* Increasing the number of epochs can lead to lower validation loss values -
especially compared to our 23 epoch experiments. This could suggest that
training further may still lead to further decreases in loss - despite seemingly
stabilising on our smoothed curves.

* From our continued experiments, the most promising set of parameters to pur-
sue further - based on loss curves and perceptual evaluation - is learning rates
5e~* & Te~*, with warm-up steps near 32,000. These will be the starting point
for one more phase of increasing our training time before expanding to the
total dataset.
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75 epochs

For this set of experiments, we increase our training time further - this time to 75
epochs. We also add additional validation prompts extracted from our training and
validation sets as we found that our models were more capable of generating audio
from simple prompts, rather than the descriptive prompts used in AC. To test this
theory, we added in additional simple validation prompts to our training pipeline.
Our validation prompts can be found in Appendix F

We choose our learning rates and warm-up steps following the results of our previous
phase of experiments. A summary of our experiment parameters can be found in
Appendix C.

Our loss curves (Figure 4.17 show that 28,000 warm-up steps are an improvement
over 32,000 warm-up steps in terms of minimising both training and validation
losses. The larger of the two learning rates 7e~* also results in lower losses compared
to 5e~*. However, these loss values are not wildly dissimilar to values obtained in
previous experiment phases.

Training Loss Validation Loss
O 5e*-4, 32k warm-up O 7e*-4, 32k warm-up O 7e*-4, 28k warm-up O Se*-4, 32k warm-up [ 7e*-4, 32k warm-up O 7e*-4, 28k warm-up
o 4, O Se*-4, 28k warm-up

7€
5e” 28k warm-up

Figure 4.17: Training and validation MSE loss curves for AC subset at 5e~* & 7e™ for
75 epochs at 28,000 and 32,000 warm-p steps

The generated audio outputs yielded more promising results compared to previous
experiments:

* For our simpler inference prompts, such as “a spectrogram of [someone typing
on a keyboard/train horn/a dog barking]”, our model generates recognisable
audio matching the prompt.

* For more complex prompts, our model struggles to generate audio matching
the prompt - generating noise and distortion in some cases. However, inference
for prompts containing simple words and concepts (such as “birds chirp” and
“a horn honking”), was capable of generating audio which contained features
related to these prompts.

For example, clear and recognisable bird chirping could be found in inference
for “a spectrogram of An animal hissing followed by a man mumbling then a
pig oinking while birds chirp in the background” whereas a train horn can be
heard in “a spectrogram of A horn honking followed by a man laughing then
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talking and plastic clanking on a hard surface” at the start of our generated
audios. This confirms that our model is better suited for generating simpler
prompts but also that our model is capable of understanding temporal dimen-
sions in our prompts (e.g. generating a horn honking before other sounds - per
the prompt).

Increasing our training length did result in increasingly usable audio clips - how-
ever, our model still fails to produce audio matching longer, more complex prompts.
As we have focused on learning rates, epochs and warm-up steps to varying levels
of success, we then decided to evaluate whether adjusting our AdamW optimiser
parameters could unlock this functionality.

Adam tuning

We continue our experiments by examining how changes in our optimiser parameter
values affect our training and results. We had previously used the default Adam
parameters (3; = 0.9, B, = 0.999 [114]) with a weight decay value of 0.01 (given
as default in the Diffusers package [24]). These parameter values have been found
to work well for many ML problems [114], so the focus of this optimisation is to
perform a local search over values not too dissimilar to these defaults.

We chose to focus on 3, to stabilise our gradient updates, aiming to make our op-
timiser more sensitive to recent gradients by reducing this value; our training loss
often has high variance, and there is evidence (from our earlier phases) that there
may be a causal link between stability of training and quality of outputs. For weight
decay, we chose to test values on either side of the default, to explore the effects of
increasing or decreasing this regularisation.

For these experiments, we evaluated the effect of the following for 25 epochs for
learning rates 5e~* & Te™:

* Lowering (3, to 0.999 from 0.99.
2

* Increasing weight decay from 1le~2 to 3e~2.

* Lowering weight decay from le~2 to 3e~3.

Combining a 3, of 0.99 with both of these weight decay values.

Loss curves from our 5e~* learning rate experiments demonstrate that our lowest
validation loss is attained with a weight decay of 3¢~ and a /3, of 0.99. However,
this is paired with a smoothed training loss which never decreases past the original
value. This may be a sign of the increased regularisation effect from the increased
decay value, as well as faster adaptation to new gradients from the lowered [, value.
However, keeping our weight decay at default while lowering [, resulted in a final
lower validation loss, as well as lower training loss throughout training. However,
we do not experience any noticeable increases in quality of our generated audio.

47



4.3. AUDIOCAPS Chapter 4. Exploratory experiments

Training Loss
LR: 5e*-4, WDecay: 3e*-2, Beta2: 0.99
O LR: 5e*-4, 2, B

LR: 4, W

LR: 5e*-4

, W le*-2, Beta2: 0.99
O LR: 5e*-4, WDecay:

e*-2, Beta2: 0.999 (default) O LR: 5e*-4

%)
0.131

0.13
0.129

0.128

40k 60k 80k 100k 120k 140k 20k 40k 60k 80k 100k 120k 140k

Figure 4.18: Training and validation MSE loss curves for AC subset at 5e~* for 25
epochs, 28,000 with varying optimiser configurations

In our experiments with a learning rate of 7e~%, these parameter adjustments did not
outperform our default parameters; this is coupled with no noticeable increases in
quality of our generated audio. For both sets of these experiments, we do reach our
lowest validation losses across all previous experiments, but inference at this epoch
produces warbled and distorted audio - far from the promising results from our 75
epoch experiments.
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Figure 4.19: Training and validation MSE loss curves for AC subset at 7e~* for 25
epochs, 28,000 with varying optimiser configurations

These experiments fail to produce evidence that changing our optimiser parameters
improves on our default parameter values. Our lowest validation loss achieved is
also not coupled with an improvement on generative output. This implies that de-
fault values for our parameters may be most suited for this task (without performing
further search over the wider parameter space).

Subset observations

This empirical exploration of our subset yielded the following observations::

* Insufficient training time can negatively impact the quality of generated audio.
Longer training times result in improved output, even if our loss curves appear
to stabilise early in training.

* Selecting and optimising for appropriate learning rates can have a positive
effect on generated audio quality. This parameter had the greatest impact on
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improving our generated audio quality (after increasing training time). Further
experiments could focus on granular fine-tuning for learning rate.

* Too many warm-up steps may possibly contribute to overfitting, and too few
may result in unstable gradient updates (possibly leading to exploding gradi-
ent).

* Adjusting weight decay and 3, optimiser parameter values seems to have no
positive effect on generated audio quality.

* Our model struggles to generate audios of complex prompts and performs bet-
ter when prompted with simpler and shorter prompts. This may be a result of
missing classes in our dataset.

From these experiments, the most successful configuration for achieving prompt-
aligned audio fidelity included learning rates of 5¢=* and 7e~%, warm-up steps of
28,000 (20% of the total training steps in our 75-epoch experiments), and the de-
fault Adam optimiser values combined with extended training durations.

4.3.2 Prompt and data adjustment

The final set of adjustments to our experiment methodology involves removing the
phrase “a spectrogram of” from both the data samples and the inference prompts.
Initially, each sample in our training dataset included this three-word prefix to en-
sure we could prompt our model with a signifier to enforce spectrogram generation.
However, we hypothesised that this consistent prefix across all samples might hin-
der the model’s ability to generalise, potentially causing it to overfit to this repeated
signifier. We aim to rule out such limitations and observe if our model could still
generate spectrograms without this prefix.

For these experiments, we update our list of validation prompts to include another
simpler prompt, while removing this signifier from all prompts (list can be found in
Appendix F).

Upon removing this signifier, we immediately observed clear visual evidence that
our model continues to generate spectrograms, underscoring the effectiveness of
our fine-tuning (Figure 4.20). This indicates that the inclusion of this signifier might
be unnecessary, given that our fine-tuning procedure alone seems sufficient for the
model to generate spectrograms.

For our subsequent experiments, we opted to retain these adjustments to our data
and prompts.
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Figure 4.20: Inference outputs from 25 epochs of fine-tuning on signifier-adjusted
dataset for different inference prompts, at different epochs through training - demon-
strating evidence of spectrogram output.

4.3.3 Full dataset

After these experiments, we scale up experiments to our full dataset using learning
rates He~* & 7e~*, warm-up steps of 28,000 and our default AdamW parameters.
These configurations were chosen based on promising results from our earlier ex-
periments.

From our loss curves (Figure 4.21), we can see steadily decreasing training loss over
time. However, our validation loss exhibits more variability: it decreases early in
training, then increases, and eventually stabilises at a value higher than our initial
loss. However, looking at our unsmoothed curve (Figure 4.22), we can see these
volatile loss updates (including evidence of our loss successfully decreasing at mul-
tiple points throughout training). These validation loss fluctuations may arise due
to gaps in our dataset causing a mismatch in data distribution between our training
and validation sets - possibly resulting in our validation set failing to be fully repre-
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sentative of our training data. Comparing between these two learning rates, our loss
curves are very similar for both experiments.

We elect to use these two models for our final quantitative evaluation, as detailed in
Section 5.2.
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Figure 4.21: Training and validation MSE loss curves for AC dataset at learning rates
5¢~* and 7e~* for 75 epochs and 28,000 warm-up steps.
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Figure 4.22: Unsmoothed validation MSE loss curves for AC dataset at learning rates
5¢~* and Te~* for 75 epochs and 28,000 warm-up steps.

4.4 Summary of experiments

In this chapter, we embarked on a comprehensive exploration of various experimen-
tal configurations to optimise the performance of our model in generating audio
spectrograms. Here is a synthesis of our findings:

* Our model was successful at generating audio for certain classes, but unsuc-
cessful with others. This may be solved from a further scaling up of our training
dataset to improve generalisability.

* Our model also had more success at generating audio following simpler prompts
- possibly due to low generalisability. However, our model did show some ca-
pability of discerning temporal dimensions in prompts - generating sounds in
the order they were mentioned.
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* Our model does not require a signifier - or keyword - added in training data or
as part of inference prompts. Our fine-tuning alone is sufficient for our model
to generate spectrograms without being specifically prompted to.

* We discovered that our loss curves - while indicative of the model’s learning
progression - are not necessarily fully indicative of the final audio quality. This
can be seen from comparing inference outputs at validation loss minimums, to
the end of training - epochs with lower validation losses, do not necessarily cor-
respond to greater audio generation. However, this validation loss instability
may have arisen from gaps in our dataset leading to a mismatch in distributions
between our training and validation sets.

* Absolute loss values were not always indicative of audio quality. Instead, train-
ing stability might be a more reliable metric.

* Increasing training time has a direct correlation with improved generative
power, with our 75 epoch experiments outperforming our 25 and 50 epoch
experiments when evaluated by perceptual audio quality.

* Fine-tuning learning rate led to improvements in audio quality, however selec-
tion of appropriate learning rate is still necessary due to evidence of training
experiencing exploding gradient.

* Choice of amount of warm-up steps influenced our training - with too few
resulting in unstable gradient updates, and too many potentially contributing
to overfitting.

» Slight adjustments to our AdamW optimiser parameters did not lead to any
improvements. This suggests that the default values are ideal for this fine-
tuning, but further research could potentially explore this parameter space in
more depth.

This chapter details a novel exploration into fine-tuning SD for generating non-music
audio spectrograms. Through rigorous experimentation, we have identified both
strengths and limitations of our model, shedding light on its capabilities and areas
requiring further refinement. The findings underscore the importance of dataset
quality, the nuanced relationship between loss metrics and perceptual outcomes,
and the sensitivity of the model to training parameters. These insights not only
provide a foundation for future research but also emphasises the need for meticulous
parameter tuning and dataset curation to achieve optimal performance. The insights
from this chapter are pivotal for future research, emphasising the importance of
parameter tuning and dataset curation in enhancing the generative capabilities of
SD for audio.
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Results and metrics
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The evaluation of experimental success also depends on the generation of objective
metrics. These metrics can provide an understanding of how successful our model
is at producing high-quality prompt-aligned audio and its level of generalisability to
varied prompts. Generating these metrics also allows us to compare to current state-
of-the-art (SOTA) approaches and how well our best-performing Stable Diffusion
(SD) configurations can be used as a text-to-audio (TTA) system. In this chapter, we
detail which metrics we use and subsequent results.

5.1 Metric selection

A number of metrics have been used to evaluate the performance and quality of
generated images, and it is important to choose appropriate metrics for our domain
(spectrograms).

The first of these is CLIPScore [118]; CLIPScore uses CLIP (a model trained on im-
age caption pairs) to generate captions of image input [78]. CLIPScore is a metric
which evaluates the correlation between a generated caption for an image, and the
actual caption (or prompt) of the image. In CLIP’s embedding space, images and
their associated captions are nearby, whereas unrelated images and captions are far
apart - this means that we can evaluate generated images by comparing how similar
the image and their corresponding captions are in this embedding space. However,
our model is fine-tuned to generate spectrograms of differing audio content. A CLIP
model (trained on images) will be unable to appropriately discern the distance be-
tween our captions (e.g. bird song) from our spectrogram image (e.g. audio of bird
song). This makes CLIPScore an inappropriate metric to use for our evaluation.

53



5.2. RESULTS Chapter 5. Results and metrics

Other metrics include Inception Score (IS) [119] and Fréchet Inception Distance
(FID) [59] which are extensively used to evaluate generated image quality [52, 70,
60, 61, 62, 63, 64, 65, 66, 67, 74]. IS evaluates the distribution of generated images
(by evaluating how well a separate network can classify generated images), and
FID compares distributions of our generated image set, to a set of real images. IS
is usually implemented using a Inception v3 model which is a CNN image classifier
pre-trained on ImageNet [120], but recent research [31] also uses an audio classifier
(PANNSs) in place of Inception [121].

FID similarly uses an Inception model, but instead uses this to extract features from
generated and real images and then calculates the difference in distribution between
both sets of images. The FID score is a measure of how different these two sets are -
with a lower score indicating that generated images are more similar to real images.
This metric was also adapted for the audio domain by using a different model for its
classifier (Fréchet Audio Distance (FAD) [91]); this has since been used to evaluate
generated audio quality [31, 32]. To compare with current SOTA TTA generative
models, we elect to use FID, IS and FAD for our evaluation metrics.

To evaluate, we iterate over captions in our test set to generate a set of test spec-
trograms using these captions as prompts'. We then convert these spectrograms to
audio and use this as our generated dataset - with the test set acting as our ground
truth. We then apply a PANN model to extract features from both of these sets to
generate IS, FID & FAD scores.?

5.2 Results

We generate metrics of our final set of models using parameters identified as promis-
ing during our exploratory experimentation detailed in Section 4. These are models
fine-tuned with learning rates 5e~* and 7e~*, using 28,000 warm-up steps and de-
fault AdamW optimiser values for 75 epochs on our full AudioCaps dataset.

!The AudioCaps test set contains 5 captions for each sample, we randomly sample one of these 5
text captions following the methodology detailed by current SOTA TTA model AudioLDM [31].
2Evaluation code is provided by Liu et al. (2023) as part of the release of AudioLDM [31].
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Model | FID| | ISt | FAD |
AudioLDM-S [31] 29.48 | 6.90 | 2.43
AudioLDM-L-Full [31] 23.31 | 8.13 | 1.96
Make-an-Audio [122] - - 2.66
Make-an-Audio 2 [90] - - 2.05
TANGO [32] - - 1.73
AudioLDM 2-AC [33] - - 1.67
AudioLDM 2-AC-Large [33] - - 1.42
SD for Audio Spectrograms with Learning Rate: 5e~* | 66.89 | 3.84 | 14.26
SD for Audio Spectrograms with Learning Rate: 7e~* | 68.38 | 3.66 | 9.65

Table 5.1: Quantitative metrics comparing our models to current SOTA TTA systems.
Our models are trained for 75 epochs, with 28,000 warm-up steps at two different learn-
ing rates. SOTA metrics reproduced from [31, 33].

As seen in Table 5.1, our current model does not perform as well in our metrics
compared to current SOTA. Despite these results, our research offers the following
insights:

* SD is capable of producing usable prompt-guided audio, but may be signifi-
cantly affected by the quality and completeness of its training dataset. From
our experiments, our model was capable of producing audio for certain con-
cepts (e.g., bird song) but incapable of replicating other concepts (e.g. drums,
or chatter). This problem could be attributed to our incomplete AudioCaps
dataset (due to many samples being removed from YouTube). Our quantitative
results reflect the poor generalisability revealed in our experiments.

* While usable audio was achieved, a more complete hyperparameter search
could lead to improved performance. Due to memory constraints, we were
unable to conduct a full parameter sweep nor experiment with larger batch
sizes. Current SOTA models are trained on up to eight NVIDIA A100 80GB
GPUs - significantly more than our consumer-level hardware. Further research
focusing on performance could leverage additional compute to further search
the parameter space.

* Our primary goal for this research was to conduct the first exploration into
the feasibility of using SD as a TTA system - potentially offering a paradigm
shift for providing increased consumer accessibility to building their own TTA
systems. SD is particularly suitable for consumer accessibility due to its open-
source nature and large community.

Due to the limited scope of this research, we believe these metrics do not reflect
optimal performance which may be achieved through further research and exper-
imentation. We present these metrics as an initial benchmark for which further
developments can build upon.
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A benefit of the Stable Diffusion (SD) ecosystem is the availability of existing tools
and functionality either provided natively as part of SD, or by the community. This
chapter will demonstrate how additional SD functionality could be used to enable
further research, provide additional control over generated output, and expand con-
sumer accessibility to developing their own text-to-audio (TTA) systems.

6.1 Automatic1111 Stable Diffusion WebUI

Automatic1111’s Stable Diffusion WebUI is a browser interface developed to im-
prove accessibility to training and inference using SD [87]. This software is very
popular, with over 101,000 stars and 20,000 forks on its GitHub repository. This
UI allows users to employ a model checkpoint (either provided by AUTOMATIC1111
or supplied themselves) to easily generate images using original SD modes such as
text-to-image, image-to-image as well as several additions such as inpainting (gen-
erating new images to fill in a specified mask), outpainting (extending the original
image and inpainting the empty space), negative prompting (specifying what our
model should avoid during generation) and upscaling (increasing the resolution of
a specified image).

We can load our fine-tuned model weights (which are small due to our fine-tuning
strategy LoRA) into this UI, and unlock this additional capability - not only for re-
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searchers, but also for consumers (without ML expertise) looking to generate audio
themselves.

6.2 Demonstration

With minimal effort, we can use our trained model weights with the SD WebUI by
first converting our checkpoints from .bin files (which our training script generates)
to .safetensor files. These .safetensor files can be dragged into our WebUI installation
directory - enabling easy usage of a number of SD tools and functionalities.

Stable Diffusion checkpoint
w1-5-pruned-emaonly.safetensors [6ce0161689] 5]
txt2img
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<lora:Se4-full-T5epoch:1= a calm forest ambiance with birds chirping and distant rustling of
leaves

Steps: 150, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 2503788729, Size: 512x512,
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508b69abeecT’, Version: vL.6.0
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Figure 6.1: Demonstration of SD WebUI generating spectrograms using our fine-tuned
model

This interface provides an easy way for a user to perform inference with our trained
model - simply by entering a prompt and then pressing Generate. This interface
also provides a number of options, such as batch count, batch size and the level
of classifier-free guidance (i.e. how much the image generation follows the text
prompt). The low size of our model checkpoints (3.3MB) and the usability of this
Ul, already lowers the barrier to entry for those looking to generate their own text-
to-audio inferences.

Apart from its ease of use, this UI also allows us to apply SD-specific tools to our
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spectrogram generation. For example, we generate a 10-second audio clip following
the prompt “a calm forest ambiance with birds chirping and distant rustling leaves”.
We can then use this generated spectrogram and WebUT’s inpainting functionality to
draw masks on our spectrogram to be inpainted over.

t ”%’f Sl 14

T

(a) Original image

Figure 6.2: Demonstration of inpainting ‘train horn’ over half of a spectrogram gener-
ated with prompt ‘a calm forest ambiance with birds chirping and distant rustling leaves’.

Inpainting half of our spectrogram (Figure 6.2) produces audio blending our original
prompt with the inpainted ‘train horn’. Different mask placements modify tempo-
ral and frequency components, leading to varied audio blends. For instance, center
inpainting merges train horn with forest ambiance, while bottom-right corner in-
painting retains bird chirps. Irregular masks yield unique audio blends. Further
images of this inpainting can be found in Appendix G.

WebUI also offers outpainting functionality, extending our audio length with addi-
tional generation. We extend our original spectrogram in both horizontal directions,
expanding the length of our audio clips with generated audio. This allows us to
extend the length of our audio clips with additional generation, offering additional
flexibility to the audio lengths our model can provide.

This is a brief demonstration of the additional functionality that SD provides. This
functionality can increase the flexibility and use-cases that our model is capable of.
Inpainting offers a way for users to edit their audio with newly generated audio -
creating blends of different audio classes or trimming entire durations from their au-
dio to replace with new audio. Outpainting offers flexibility by extending our audio
along the temporal dimension, allowing our model to generate audio longer than ten
seconds. This control over the temporal dimension also represents a route for devel-
oping this research into a text-to-speech system - potentially using this outpainting
to piece together audio clips of sentences of varying length.

Other functionalities not tested here include negative prompting, attention (allow-
ing for certain elements of the prompt to be (de)emphasised), and prompt editing
(adjusting the prompt at later stages in the generation process). Further research
could explore different in-built functionalities within SD, as well as networks built
to be used in conjunction with SD, such as ControlNet [88].
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7.1 Overview of project

This project offers the first exploration into the feasibility of fine-tuning Stable Diffu-
sion (SD) for generating natural and urban (non-music) audio. This novel research,
conducted on consumer-level hardware, also tests the suitability of creating an ac-
cessible TTA paradigm for consumers looking to create their own systems.

To this end, we first conducted a literature review detailing the history of audio
generation, diffusion models and the SD ecosystem. This showcased the efficacy
of diffusion models in generating audio, evidence of SD in particular being used to
generate audio through fine-tuning and highlighted the SD ecosystem - and how it
could be leveraged to provide accessible and unique generation paradigms.

Subsequently, we undertook extensive empirical experiments, fine-tuning SD across
105 runs, amounting to a total compute time of 136 days. From these experiments,
we generate initial evidence of the impact of various hyperparameters on fine-tuning
- and subsequent generation.

Furthermore, we offer quantitative metrics for comparison with the current state-of-
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the-art (SOTA) and demonstrate the practical applications of the SD ecosystem for
both consumers and future researchers.

7.2 Summary of novel findings

Throughout this research journey, we have delved deep into the capabilities and po-
tential of fine-tuning SD for generating non-music audio spectrograms. This section
aims to synthesise the key findings from each of the primary chapters of this research
into a cohesive summary.

* Model capabilities and limitations: Our experiments revealed that SD can
be successfully fine-tuned on consumer-hardware to generate non-music au-
dio. While it excelled in certain areas, it faced challenges in others, empha-
sising the potential need for a more comprehensive training dataset. Simpler
prompts yielded better results, suggesting a current limitation in the model’s
generalisability. However, we also discover our model’s ability to generate
spectrograms without explicit signifiers or keywords during training - which
will be vital information for future research.

* Training insights: The relationship between loss curves and audio quality was
nuanced. While loss curves indicated learning progression, they did not al-
ways correlate with audio quality. Training stability, longer training durations,
and meticulous hyperparameter tuning emerged as crucial for optimal perfor-
mance. The default values of the AdamW optimiser seemed to be well-suited
for this fine-tuning task but future research could conduct a deeper dive into
these parameters.

* Performance benchmarks: Although the model’s performance did not surpass
the current state-of-the-art, it showcased the potential for SD in audio genera-
tion. The model’s performance was significantly influenced by the quality and
completeness of its training dataset. There remains potential for performance
improvement through a more exhaustive hyperparameter search.

* SD ecosystem and versatility: We also demonstrate the versatility and poten-
tial of the SD ecosystem. Inpainting and outpainting functionalities (among
other SD functionality) offer users unprecedented control over audio gener-
ation. The model’s ability to control the temporal dimension of audio opens
avenues for further flexibility in applications as well as its application for text-
to-speech (TTS) systems. Several functionalities within the SD ecosystem re-
main unexplored in this research, suggesting ample opportunities for future
studies.

* Consumer accessibility: One of the primary objectives of this research was to
assess the feasibility of SD as a TTA system, emphasising its potential for con-
sumer accessibility. This research demonstrates that it is feasible to fine-tune
SD on consumer-level hardware - opening the door for consumers to fine-tune
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their own SD models for TTA generation to suti their needs. The open-source
nature and large community surrounding SD make it particularly suitable for
democratising audio generation for consumers.

In conclusion, this research has provided a comprehensive exploration into SD ca-
pabilities, strengths, and limitations as a TTA system. The findings underscore the
importance of dataset quality, meticulous parameter tuning, and the vast potential of
the SD ecosystem. These insights not only lay a solid foundation for future research
but also highlight the immense potential of SD in revolutionising audio generation
for both researchers and consumers.

7.3 Future work

This project has demonstrated the potential and challenges of using Stable Diffu-
sion (SD) for generating non-music audio spectrograms and represents the first step
towards a wealth of further research in this space:

* Performance enhancement: A logical progression would be to bolster the
model’s performance. This can be achieved through a more exhaustive param-
eter search, such as a grid search, to delve deeper into the intricate relation-
ships between various hyperparameters and their impact on training. Given
the observed sensitivity of the model to training parameters, such a search
could yield significant improvements.

* Dataset expansion: Our findings underscored the importance of dataset qual-
ity and completeness. Future endeavors could look into expanding the dataset
by incorporating additional AudioSet classes, locating and reintegrating omit-
ted portions of the AudioCaps dataset, and exploring additional sources such
as the BBC Free Sound effects library [123].

* Speech generation: SD’s ability to control the temporal dimension of audio, as
demonstrated through inpainting and outpainting functionalities, suggests its
potential applicability in text-to-speech systems. Exploring this avenue could
lead to proving the feasibility of SD as a TTS system.

* Human evaluation: To provide a holistic assessment of the generated audio’s
quality, future research should consider human evaluations. Human evalua-
tions within this space are often done with a panel of domain experts - includ-
ing this element in further research would help improve the interpretability of
the quality of our generated output, complementing quantitative metrics.

* Exploring SD ecosystem: The vast potential of the SD ecosystem remains
largely untapped. Tools like ControlNet [88] offer a plethora of features, from
improved consistency in inpainting to style-matching and image/text-guided
generation. Harnessing these tools could usher in innovative paradigms of
audio generation, providing users with additional control and versatility.
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In summary, this research has offered a detailed examination of SD’s potential and
challenges in the realm of TTA generation. The insights gathered emphasise the sig-
nificance of a robust dataset, careful parameter tuning, and the diverse capabilities
within the SD ecosystem. These findings serve as a starting point, suggesting di-
rections for further exploration and emphasising the potential of SD to make audio
generation more accessible to a broader audience.

7.4 Ethics and usage concerns

7.4.1 Ethical concerns

There are two key ethical concerns surrounding generative models: misuse and
copyright infringement. This specific research focuses on non-speech audio; this
means the potential for misuse is much lower than what could arise from generation
of speech audio. Generating bird song, or sounds of traffic could be seen as having
lower potential harm than generating fake speech of real persons. However, there
are instances where misuse could cause harm by generating audio with the purposes
of misinformation - such as generating false sounds to portray a peaceful protest as
violent. For example, image generation has previously been used by Amnesty Inter-
national to create synthetic images of Colombia’s 2021 protests - with the intention
of further highlighting the political situation, but with the downside of potentially
undermining their core message [124]. Similar misuse of audio generative mod-
els could also lead to confusion, misinformation and a potentially false portrayal of
world events.

However, improving the accessibility of these systems can also aid creativity and
productivity across a number of industries - especially creative industries. Creative
work - such as film and video gaming - often relies on the artificial creation of sound
effects through the physical manipulation of objects to recreate target sound. Text-
to-audio (TTA) systems enable hobbyist creatives to have access to a multitude of
different sounds, without needing to invest in recording equipment, or specialised
knowledge; these systems may also free up resources from professional ‘Foley’ artists,
allowing creative teams to redirect focus or resources towards other areas of interest.

If this research is extended towards text-to-speech (TTS) specifically, then this gen-
erative model may facilitate the creation of deepfakes by allowing the generation of
fake speech of real persons. For example, celebrities are often targeted as subjects of
abuse of misuse of generative audio systems - creating voice clips with their likeness
speaking (unsavoury) things without the original person’s consent [125]. Scammers
have also been using TTS Al systems to generate realistic copies of loved ones speech
- with the goal of extorting money from vulnerable people [126]. However, speech
synthesis may also provide benefits - such as improving quality of life for persons
with disabilities affecting their speech - by providing natural-sounding speech to use
for communication.
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Increasing accessibility to high-quality generation may increase ethical risks, and any
increased benefits (including further democratisation of useful technology) need to
be weighed against direct and indirect costs from misuse. A common complaint of Al
systems is a lack of interpretability, especially for those unfamiliar with ML. Putting
accessible systems into the hands of more people may directly increase hands-on
experience across the population, and hopefully highlight the capabilities and limi-
tations of this technology - leading to a greater ease of identification of misuse.

The second main concern is that of copyright infringement - especially regarding
acquisition and use of training data. For our research, we use AudioSet [30] (and
AudioCaps [29]), which are large-scale datasets based off 10 second intervals from
tagged YouTube videos. These databases are provided under Creative Commons li-
censes, enabling access to users to share and adapt this data for any purposes, includ-
ing commercially and academically. However, these datasets do not detail the ethical
risks of the upstream data collection from YouTube itself. One might speculate that
YouTube has clauses in their terms and conditions which grant Google the freedom
to collect user-uploaded videos for dataset purposes; we also have to assume that
this database did not include any obviously copyrighted material. However, with the
rapid development of Al systems, it is entirely likely that video uploaders could not
have foresaw their content being used to train models. Additionally, an answer in
copyright law is yet to be fully determined - with confusion present in how poten-
tially copyrighted training data, and generation built off this training data should be
treated in our legal system [127, 128, 129].

This problem can also be seen within Stable Diffusion, which was trained on a subset
of the LAION-5B dataset [85]. In the FAQs on the LAION website [130], they claim
that their datasets are simply ‘lists of URLs to the original image’ without any strong
indication of a consideration of the underlying copyrights of these images. This
separation makes identification of copyright implications difficult, with one photog-
rapher suing LAION directly for his photos being included within their dataset [131].
Within the original paper for Latent Diffusion Models - there is no stipulation of any
additional effort made to identify whether images in their training data is under
copyright (which would be difficult to do for each of 2 billion images used).

Ultimately, Al research is built off the prior actions of prominent technology com-
panies and research labs. AudioSet is one of the largest audio databases, and has
been used for a multitude of downstream research involving model training and cre-
ation. This has the effect of any work built upon this downstream research, to also
potentially carry the same ethical risks. SD is an open-source and accessible model
but this increase in accessibility also means that any potential harm from copyright
infringement is multiplied with its large user-base. However, without effective and
clear regulation - along with transparency from the creations of datasets and foun-
dational models (e.g. SD, ChatGPT) - we cannot aim to completely understand the
scale of any copyright violations which may already be present throughout the field.
With this research in particular, we can only draw attention to these potential prob-
lems and aim for transparency to minimise these risks.
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7.4.2 Usage concerns

The LAION dataset, used to train SD, contains not-safe-for-work (NSFW) images.
This means that this model is theoretically capable of generating unsuitable content
for many audiences. Our fine-tuning does lead our model to generate spectrograms.
However, in the event that NSFW content is detected, SD has an in-built filter pre-
venting this content from being displayed - any inappropriate content which is ac-
cidentally generated should theoretically be prevented from causing any accidental
harm.

AudioSet (and AudioCaps) consist of sound clips tagged from publicly YouTube clips
- this means that any unsuitable content is either not present on the platform, or
hidden behind an authentication barrier (preventing any NSFW sound from enter-
ing our dataset). This should mean that our model is incapable of producing any
inappropriate audio.

7.4.3 Existing codebases used

In the interest of transparency, we also reiterate any existing codebases adapted for
this research:

* Diffusers’ Training script: We adapt Hugging Face’s Diffusers’ [24]
‘train_text_to_image_lora.py’ training script. We edit this script to generate val-
idation and training loss per epoch, as well as adapt it to log our training,
validation and inference outputs to Weights & Biases.

* Riffusion Conversion Code: We adapt Riffusion’s code [23] used to convert
audio to spectrograms and back. We adjust the hop length parameters to
convert 10-second clips (as opposed to the 5-second clips Riffusion used) to
512x512 spectrograms.

* AudioLDM Evaluation Code: We directly use the evaluation code given by
AudioLDM [31] for ease of comparison and usability.

* WebUI Conversion Code: We use a pre-existing script to convert our model
checkpoints to safetensor files for use on the SD WebUI [132].
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Appendix A

AudioCaps ontology

Audio class
1

male speech
female speech ]
bow-wow 1
engine
car passing by ]
stream 1
whimper (dog) 1
truck ]
revving ]
daor 1
horse ]
idling
maotorboat, speedboat ]
gurgling 1
meow ]
clip-clop 1
wind 1
hiss ]
child speech ]
snoring ]
rain
helicopter 1
race car, auto racing ]
spray 1
duck 1
tick-tock
bus
laughter
wood
motorcycle
water tap, faucet ]
siren 1
aircraft
baby cry, infant cry
bird vocalization
‘gunshot, gunfire 1
pigean, dove ]
toilet flush
typing
chirp, tweet 1
vibration
engine starting
train horn
insect
drill
bee, wasp, etc.
«car horn
goat
sewing machine
rustling leaves
dishes, pots
waves, surf
crumpling, crinkling
sheep
frying (food)
whistling
burst, pop
rub
applause
tire squeal

beep, bleep{——————————— ]
S e —

thunder

ok ]
whoosh, swoosh, swish4 ]

crying, sobbing ]
LI —
trickle, dribble ]
burping, eructation ]

sneeze 1

I

-
bell
o 200 400 600 800 1000 1200
Number of examples

Figure A.1: Frequencies of annotated instances per category for AudioCaps. Figure
reproduced from [29].
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Appendix B

Fine-tuning illustrations

invert

Input samples —— “S..” “An oil painting of S, “App icon of S..”

“Elmo sitting in % o
the same pose as Sy~ Crochet S,

aE

Input samples Anvert, g “lf)l?sl;)[::nlggo r?i\tg:ag* “A S, backpack” “Banksy art of S.”  “A S, themed lunchbox”

Figure B.1: Textual inversion examples. Reproduced from [98].

Fine-Tunin Inference
Input g Output
Images (~3-5) + Unique
subject’s class name identifier
e N
"A (V] dog in
") the beach”
- DreamBooth -+ —_—
"A (V] dog
walking on a >
\ J \ J collotful, carpet,”
Pretraind Personalized
Text-to-Image Text-to-Image
model model

Figure B.2: DreamBooth approach overview. Reproduced from [26].
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Chapter B. Fine-tuning illustrations

Latent Seed
Gaussian noise
~N(0.1)

U-Net (with )

Model output

Text embedding
<An> <image> <of> <..>

what is updated! - =
m < Repeat for N steps

Noise application

MNoised sample

Input sample

Figure B.3: Diagram illustrating LoRA weight injection, reproduced from [133].
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Appendix C

Overview of experiments

Index

Learning Rate

warm-up Steps

[ —
P VOO UTAWNR

R
3e~3
le
le™3
le™3
3e73
3e73
le
Te™4
H5e~4
Te 4
5e~4

16000
16000
16000
16000
30000
60000
32000
32000
28000
28000
32000
32000

Table C.1: Summary of 50 epoch experiments.

Index

Learning Rate

Warm-up Steps

1
2
3
4

Te

28000
28000
32000
32000

Table C.2: Summary of 75 epoch experiments.
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Appendix D

Pokémon BLIPS data samples

(a) A drawing of a green (b) A bird with a long
Pokémon with red eyes  beak flying through the air

(c) A purple snake sitting (d) A picture of a white
on top of a white horse with orange and
background yellow flames

Figure D.1: Samples from Pokémon BLIP caption database [115].
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Chapter D. Pokémon BLIPS data samples

Epoch 12 Epoch 15 Epoch 18

Figure D.2: Result of image generation using the prompt “a pokemon with blue eyes” of
fine-tuning SD1.5 on Pokémon BLIP captions after different epochs during fine-tuning.
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Appendix E

Experiment spectrogram examples
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Chapter E. Experiment spectrogram examples

(e) Epoch 40

g i Fm -

(0) Epoch 100

(d) Epoch 125

(f) Epoch 155

Figure E.1: Inference outputs for “a spectrogram of bird song” at different epochs
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Chapter E. Experiment spectrogram examples

" o

i ‘B oY
] i Lo
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| ,47 l‘ A8 ‘

o NN

(d) Snare drum

Figure E.2: Selected samples from 5-class AS training dataset.
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Chapter E. Experiment spectrogram examples

le?

(b) Cheering

1e=3 1e=4 1e=%

(d) Acoustic guitar

le%

(e) Snare drum

Figure E.3: Selection of inference outputs from prompt “a spectrogram of [class]” at
different learning rates after training for 61 epochs incl. 1,000 warm-up steps.
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Appendix F

Inference prompts used during
training

Our set of validation prompts (each prefixed with “a spectrogram of”) for 50 epoch
experiments are:

“An animal hissing followed by a man mumbling then a pig oinking while birds
chirp in the background”

“Music plays and someone speaks before gunfire and an explosion occurs”
“Someone is typing on a computer keyboard”

“A horn honking followed by a man laughing then talking and plastic clanking
on a hard surface”

“A dog barking”
“A train horn”
“A hammer hitting a hard surface”

“A man laughing”

Final set of validation prompts:

“An animal hissing followed by a man mumbling then a pig oinking while birds
chirp in the background”

“Music plays and someone speaks before gunfire and an explosion occurs”
“Someone is typing on a computer keyboard”

“A horn honking followed by a man laughing then talking and plastic clanking

86



Chapter F. Inference prompts used during training

on a hard surface”

“A dog barking”

“A train horn”

“Bird song”

“Birds chirping”

“A snare drum”

“Horse hooves clip-clop and voices in the background”

“Sheep bleats”
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Appendix G

Inpainting and outpainting examples

(a) Original image (b) Drawn mask (in light grey) (c) Inpainting result

Figure G.1: Demonstration of inpainting ‘train horn’ over the middle of a spectrogram
generated with prompt ‘a calm forest ambiance with birds chirping and distant rustling
leaves’.

I

(a) Original image (b) Drawn mask (in light grey) (© Inpainting result

Figure G.2: Demonstration of inpainting ‘train horn’ over the bottom-right of a spec-
trogram generated with prompt ‘a calm forest ambiance with birds chirping and distant
rustling leaves’.
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Chapter G. Inpainting and outpainting examples

(a) Original image (b) Drawn mask (in light grey) (c) Inpainting result

Figure G.3: Demonstration of inpainting ‘train horn’ using irregular masking over a
spectrogram generated with prompt ‘a calm forest ambiance with birds chirping and
distant rustling leaves’.

89



Chapter G. Inpainting and outpainting examples

(d) Outpainting to the left and right, and inpainting ‘train horn’ over the original image.

Figure G.4: Demonstration of outpainting from SD WebUI.
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