RT-LA-VocE: Real-Time Low-SNR Audio-Visual Speech Enhancement
Honglie Chen and Rodrigo Mira (equal contribution), Stavros Petridis, Maja Pantic
Published in Interspeech, 2024
Abstract
In this paper, we aim to generate clean speech frame by frame from a live video stream and a noisy audio stream without relying on future inputs. To this end, we propose RT-LA-VocE, which completely re-designs every component of LA-VocE, a state-of-the-art non-causal audio-visual speech enhancement model, to perform causal real-time inference with a 40ms input frame. We do so by devising new visual and audio encoders that rely solely on past frames, replacing the Transformer encoder with the Emformer, and designing a new causal neural vocoder C-HiFi-GAN. On the popular AVSpeech dataset, we show that our algorithm achieves state-of-the-art results in all real-time scenarios. More importantly, each component is carefully tuned to minimize the algorithm latency to the theoretical minimum (40ms) while maintaining a low end-to-end processing latency of 28.15ms per frame, enabling real-time frame-by-frame enhancement with minimal delay.